Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24442, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293433

RESUMO

Food fortification has attracted interest in recent years, due to the understanding that micronutrient deficiency is one of the causes of the global burden of disease, and that food fortification aims to prevent or correct a demonstrated deficiency of one or more nutrients in a specific population or population groups. Nutritional value is an important concern regarding fortification and new product development. However, people are not willing to sacrifice the organoleptic characteristics of food products. Therefore, the effect of CaCO3 nanoparticles (NPs-CaCO3) and commercial CaCO3 on the physical and sensory properties of three food matrices (cookies, fruit rolls and dairy desserts) was evaluated. A texture analysis was performed on cookies and fruit rolls; a viscosity analysis on dairy desserts; and a color analysis and sensory profile on the three matrices. The results showed that both types of calcium increase hardness in fortified biscuits and fruit rolls but, in the latter case, commercial calcium caused a higher increase in hardness (p < 0.05). Viscosity was higher in the desserts with NPs. Color presented significant changes in all the fortified matrices. These findings demonstrated that Ca-NPs are a good strategy for food fortification compared to commercial calcium carbonate, as fortification with high levels of calcium is a challenge for the food industry due to its effects on the product. The results showed that, in the matrices with commercial calcium, the changes were more evident, while the matrices fortified with Ca-NP have a better sensory response than commercial Ca, with a higher level of acceptance by the judges. Therefore Ca-NPs can be considered to be a good source of calcium for food product fortification that causes a slight effect on physical and sensory properties.

2.
Food Funct ; 11(12): 10907-10912, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33242059

RESUMO

The low bioavailability of iron is one factor that contributes to its deficiency in the human diet. For this reason, it is necessary to find compounds that can form iron chelates so that these can be added to foods that contain iron to improve its bioavailability at the intracellular level. In this study, we assessed the relationship between bovine plasma hydrolysates' iron chelating ability and their degree of hydrolysis. The hydrolysate with the highest chelating capacity was fractionated and each fraction's chelating capacity was subsequently assessed. Each fraction's effect on ferritin synthesis in Caco-2 cells was also determined. The results showed that bovine plasma hydrolysates with a degree of hydrolysis of 19.1% have an iron chelating capacity of 38.5 ± 0.4% and increase the synthesis of ferritin in Caco-2 cells five-fold compared to the control. This may be due to the fact that these hydrolysates contain amino acids such as Leu, Lys, Glu, Ala, Asp, Val, Thr, Cys and Phe, which may be responsible for binding iron to the hydrolysate, increasing its solubility and the consequent uptake by Caco-2 cells.


Assuntos
Ferritinas/metabolismo , Quelantes de Ferro/metabolismo , Plasma/metabolismo , Aminoácidos/metabolismo , Animais , Disponibilidade Biológica , Células CACO-2 , Bovinos , Quelantes , Dieta , Ferritinas/química , Humanos , Hidrólise , Ferro/química , Ferro/metabolismo , Quelantes de Ferro/química , Plasma/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...