Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672763

RESUMO

The CACCC-box motif emerges as a pivotal cis-regulatory element implicated in diverse developmental processes and diseases, particularly cardiovascular diseases (CVDs). This study centers on the intricate interplay between the CACCC-box and its binding proteins such as: the Krüppel-Like Family (KLF) of transcription factors as primary effectors in the context of CVDs. Our analysis was through a bioinformatics approach, which revealed significant transcriptional activity among KLF subgroup 2, exhibiting the highest number of interactions focusing on the established roles: pluripotency, cancer, and cardiovascular development and diseases. Our analysis reveals KLF's interactions with GATA4, MEF2C, NKX2.5 and other ~90 potential genes that participate in the regulation of the hypertrophic environment (or CVDs' Environment). Also, the GO analysis showed that genes containing the motif CACCC were enriched for multiple CVDs; in combination with STRING analysis, these results pointed to a link between KLFs and these diseases. The analysis further identifies other potential CACCC-box binding factors, such as SP family members, WT1, VEZF1, and -SALL4, which are implicated in cardiac contraction, remodeling, and inflammation processes.

2.
Stem Cell Res Ther ; 14(1): 154, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280707

RESUMO

BACKGROUND: Induced pluripotent stem cells (iPSCs) offer potential to revolutionize regenerative medicine as a renewable source for islets, dopaminergic neurons, retinal cells, and cardiomyocytes. However, translation of these regenerative cell therapies requires cost-efficient mass manufacturing of high-quality human iPSCs. This study presents an improved three-dimensional Vertical-Wheel® bioreactor (3D suspension) cell expansion protocol with comparison to a two-dimensional (2D planar) protocol. METHODS: Sendai virus transfection of human peripheral blood mononuclear cells was used to establish mycoplasma and virus free iPSC lines without common genetic duplications or deletions. iPSCs were then expanded under 2D planar and 3D suspension culture conditions. We comparatively evaluated cell expansion capacity, genetic integrity, pluripotency phenotype, and in vitro and in vivo pluripotency potential of iPSCs. RESULTS: Expansion of iPSCs using Vertical-Wheel® bioreactors achieved 93.8-fold (IQR 30.2) growth compared to 19.1 (IQR 4.0) in 2D (p < 0.0022), the largest expansion potential reported to date over 5 days. 0.5 L Vertical-Wheel® bioreactors achieved similar expansion and further reduced iPSC production cost. 3D suspension expanded cells had increased proliferation, measured as Ki67+ expression using flow cytometry (3D: 69.4% [IQR 5.5%] vs. 2D: 57.4% [IQR 10.9%], p = 0.0022), and had a higher frequency of pluripotency marker (Oct4+Nanog+Sox2+) expression (3D: 94.3 [IQR 1.4] vs. 2D: 52.5% [IQR 5.6], p = 0.0079). q-PCR genetic analysis demonstrated a lack of duplications or deletions at the 8 most commonly mutated regions within iPSC lines after long-term passaging (> 25). 2D-cultured cells displayed a primed pluripotency phenotype, which transitioned to naïve after 3D-culture. Both 2D and 3D cells were capable of trilineage differentiation and following teratoma, 2D-expanded cells generated predominantly solid teratomas, while 3D-expanded cells produced more mature and predominantly cystic teratomas with lower Ki67+ expression within teratomas (3D: 16.7% [IQR 3.2%] vs.. 2D: 45.3% [IQR 3.0%], p = 0.002) in keeping with a naïve phenotype. CONCLUSION: This study demonstrates nearly 100-fold iPSC expansion over 5-days using our 3D suspension culture protocol in Vertical-Wheel® bioreactors, the largest cell growth reported to date. 3D expanded cells showed enhanced in vitro and in vivo pluripotency phenotype that may support more efficient scale-up strategies and safer clinical implementation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Teratoma , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Antígeno Ki-67/metabolismo , Leucócitos Mononucleares , Diferenciação Celular/genética , Fenótipo
3.
PLoS One ; 18(2): e0272979, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735654

RESUMO

INTRODUCTION: Ursus americanus Pallas 1780 is the largest carnivore and the only ursid in Mexico. It is considered an endangered species in the country because its distribution and population have been reduced by up to 80% because of habitat loss or furtive hunting. These problems can lead to a diet change, which could result in metabolic disorders, such as fatty acid ß-oxidation defects or organic acid metabolism disorders. In our study, a free amino acid and acylcarnitine profile was characterized. METHODS: Peripheral blood samples were drawn from nine free-ranging black bears in a period of five months, from June to October of 2019 in Northeastern Mexico, and 12 amino acids and 30 acylcarnitines were determined and quantified. Age differences were observed in the samples through ANOVA and post-hoc Tukey test. RESULTS: Only three metabolites showed a significant difference with age: alanine (Ala) [cubs vs juvenile], free-carnitine (C0) [juvenile vs cubs] and acetylcarnitine (C2) [cubs vs adults and juvenile vs cubs]. CONCLUSION: Metabolites with variability due to age were identified, making them potential biomarkers to monitor metabolic status as early diagnosis in endangered species. This is the first study of black bear amino acid and acylcarnitine profiles, and the values found could be used as reference for free amino acid and acylcarnitine concentrations in further studies of the species.


Assuntos
Ursidae , Animais , Ursidae/metabolismo , Aminoácidos , México , Carnitina/metabolismo
4.
J Fungi (Basel) ; 7(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525315

RESUMO

The role of the Ustilago maydis putative homolog of the transcriptional repressor ScNRG1, previously described in Saccharomyces cerevisiae, Candida albicans and Cryptococcus neoformans, was analyzed by means of its mutation. In S. cerevisiae this gene regulates a set of stress-responsive genes, and in C. neoformans it is involved in pathogenesis. It was observed that the U. maydisNRG1 gene regulates several aspects of the cell response to acid pH, such as the production of mannosyl-erythritol lipids, inhibition of the expression of the siderophore cluster genes, filamentous growth, virulence and oxidative stress. A comparison of the gene expression pattern of the wild type strain versus the nrg1 mutant strain of the fungus, through RNA Seq analyses, showed that this transcriptional factor alters the expression of 368 genes when growing at acid pH (205 up-regulated, 163 down-regulated). The most relevant genes affected by NRG1 were those previously reported as the key ones for particular cellular stress responses, such as HOG1 for osmotic stress and RIM101 for alkaline pH. Four of the seven genes included WCO1 codifying PAS domain ( These has been shown as the key structural motif involved in protein-protein interactions of the circadian clock, and it is also a common motif found in signaling proteins, where it functions as a signaling sensor) domains sensors of blue light, two of the three previously reported to encode opsins, one vacuolar and non-pH-responsive, and another one whose role in the acid pH response was already known. It appears that all these light-reactive cell components are possibly involved in membrane potential equilibrium and as virulence sensors. Among previously described specific functions of this transcriptional regulator, it was found to be involved in glucose repression, metabolic adaptation to adverse conditions, cellular transport, cell rescue, defense and interaction with an acidic pH environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...