Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 165: 112560, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869544

RESUMO

Dysregulation of nicotinamide adenine dinucleotide (NAD+) homeostasis by increased activity of NAD+ consumers or reduced NAD+ biosynthesis plays an important role in the onset of prevalent, often age-related, diseases, such as diabetes, neuropathies or nephropathies. To counteract such dysregulation, NAD+ replenishment strategies can be used. Among these, administration of vitamin B3 derivatives (NAD+ precursors) has garnered attention in recent years. However, the high market price of these compounds and their limited availability, pose important limitations to their use in nutritional or biomedical applications. To overcome these limitations, we have designed an enzymatic method for the synthesis and purification of (1) the oxidized NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), (2) their reduced forms NMNH and NRH, and (3) their deaminated forms nicotinic acid mononucleotide (NaMN) and nicotinic acid riboside (NaR). Starting from NAD+ or NADH as substrates, we use a combination of three highly overexpressed soluble recombinant enzymes; (a) a NAD+ pyrophosphatase, (b) an NMN deamidase, and (c) a 5'-nucleotidase, to produce these six precursors. Finally, we validate the activity of the enzymatically produced molecules as NAD+ enhancers in cell culture.


Assuntos
Biotecnologia , NAD , Técnicas de Cultura de Células , Homeostase , Nucleotídeos
2.
Dis Model Mech ; 15(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36107830

RESUMO

Cardiolipin (CL) is a phospholipid required for proper mitochondrial function. Tafazzin remodels CL to create highly unsaturated fatty acid chains. However, when TAFAZZIN is mutated, CL remodeling is impeded, leading to mitochondrial dysfunction and the disease Barth syndrome. Patients with Barth syndrome often have severe exercise intolerance, which negatively impacts their overall quality of life. Boosting NAD+ levels can improve symptoms of other mitochondrial diseases, but its effect in the context of Barth syndrome has not been examined. We demonstrate, for the first time, that nicotinamide riboside can rescue exercise tolerance and mitochondrial respiration in a Drosophila Tafazzin mutant and that the beneficial effects are dependent on sir2 and spargel. Overexpressing spargel increased the total abundance of CL in mutants. In addition, muscles and neurons were identified as key targets for future therapies because sir2 or spargel overexpression in either of these tissues is sufficient to restore the exercise capacity of Drosophila Tafazzin mutants.


Assuntos
Síndrome de Barth , Animais , Cardiolipinas , Drosophila , Tolerância ao Exercício , Ácidos Graxos Insaturados , Mitocôndrias , NAD , Fosfolipídeos , Qualidade de Vida , Respiração , Fatores de Transcrição
3.
Eur J Nutr ; 61(1): 329-340, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34338868

RESUMO

PURPOSE: Vitamin B3 provides nicotinamide adenine dinucleotide (NAD+), an essential coenzyme in oxidoreductase reactions. Severe vitamin B3 deficiency leads to the disease Pellagra, while mild vitamin B3 deficiency has been linked to age-related and metabolic diseases. Mild vitamin B3 deficiency is understudied, especially in females. Therefore, we examined how female mice responded to a diet that induced mild vitamin B3 deficiency in male mice. METHODS: Female C57BL/6RccHsd mice were subjected for 18 weeks to a diet without vitamin B3 and low but sufficient tryptophan (0.115%) (0NR) and were compared to control female mice on the same diet with the reference dose of vitamin B3 (30NR, 30 mg nicotinamide riboside/ kg diet). RESULTS: In the female mice, no differences between the two dietary groups were found in liver nicotinamide mononucleotide (NMN) levels, body composition, whole body energy and substrate metabolism measured by indirect calorimetry, or liver triacylglycerol metabolism. Expression of seven genes that previously were shown to respond to mild vitamin B3 deficiency in male white adipose tissue were not differentially expressed between the female dietary groups, neither was insulin sensitivity. CONCLUSION: We concluded that the female 0NR mice were not vitamin B3 deficient; the role of age, sex and health status is discussed. Demonstrated by clear differences between females and males, the latter showing mild deficiency under the same conditions, this study highlights the importance of studying both sexes.


Assuntos
Tecido Adiposo Branco , Niacinamida/deficiência , Deficiência de Vitaminas do Complexo B , Animais , Feminino , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD , Fatores Sexuais , Vitaminas
4.
EMBO Mol Med ; 13(7): e13943, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34041853

RESUMO

Depletion of nicotinamide adenine dinucleotide (NAD+ ), a central redox cofactor and the substrate of key metabolic enzymes, is the causative factor of a number of inherited and acquired diseases in humans. Primary deficiencies of NAD+ homeostasis are the result of impaired biosynthesis, while secondary deficiencies can arise due to other factors affecting NAD+ homeostasis, such as increased NAD+ consumption or dietary deficiency of its vitamin B3 precursors. NAD+ depletion can manifest in a wide variety of pathological phenotypes, ranging from rare inherited defects, characterized by congenital malformations, retinal degeneration, and/or encephalopathy, to more common multifactorial, often age-related, diseases. Here, we discuss NAD+ biochemistry and metabolism and provide an overview of the etiology and pathological consequences of alterations of the NAD+ metabolism in humans. Finally, we discuss the state of the art of the potential therapeutic implications of NAD+ repletion for boosting health as well as treating rare and common diseases, and the possibilities to achieve this by means of the different NAD+ -enhancing agents.


Assuntos
NAD , Homeostase , Humanos , NAD/metabolismo , Oxirredução
5.
Nucleic Acids Res ; 49(9): 5294-5307, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33877360

RESUMO

Members of the ribonuclease III (RNase III) family regulate gene expression by processing double-stranded RNA (dsRNA). This family includes eukaryotic Dicer and Drosha enzymes that generate small dsRNAs in the RNA interference (RNAi) pathway. The fungus Mucor lusitanicus, which causes the deadly infection mucormycosis, has a complex RNAi system encompassing a non-canonical RNAi pathway (NCRIP) that regulates virulence by degrading specific mRNAs. In this pathway, Dicer function is replaced by R3B2, an atypical class I RNase III, and small single-stranded RNAs (ssRNAs) are produced instead of small dsRNA as Dicer-dependent RNAi pathways. Here, we show that R3B2 forms a homodimer that binds to ssRNA and dsRNA molecules, but exclusively cuts ssRNA, in contrast to all known RNase III. The dsRNA cleavage inability stems from its unusual RNase III domain (RIIID) because its replacement by a canonical RIIID allows dsRNA processing. A crystal structure of R3B2 RIIID resembles canonical RIIIDs, despite the low sequence conservation. However, the groove that accommodates dsRNA in canonical RNases III is narrower in the R3B2 homodimer, suggesting that this feature could be responsible for the cleavage specificity for ssRNA. Conservation of this activity in R3B2 proteins from other mucormycosis-causing Mucorales fungi indicates an early evolutionary acquisition.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Mucor/enzimologia , Ribonuclease III/química , Ribonuclease III/metabolismo , Evolução Molecular , Proteínas Fúngicas/genética , Modelos Moleculares , Mucorales/enzimologia , Mucorales/patogenicidade , Domínios Proteicos , RNA/metabolismo , Ribonuclease III/genética , Virulência
6.
FASEB J ; 35(4): e21456, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724555

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) homeostasis is constantly compromised due to degradation by NAD+ -dependent enzymes. NAD+ replenishment by supplementation with the NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) can alleviate this imbalance. However, NMN and NR are limited by their mild effect on the cellular NAD+ pool and the need of high doses. Here, we report a synthesis method of a reduced form of NMN (NMNH), and identify this molecule as a new NAD+ precursor for the first time. We show that NMNH increases NAD+ levels to a much higher extent and faster than NMN or NR, and that it is metabolized through a different, NRK and NAMPT-independent, pathway. We also demonstrate that NMNH reduces damage and accelerates repair in renal tubular epithelial cells upon hypoxia/reoxygenation injury. Finally, we find that NMNH administration in mice causes a rapid and sustained NAD+ surge in whole blood, which is accompanied by increased NAD+ levels in liver, kidney, muscle, brain, brown adipose tissue, and heart, but not in white adipose tissue. Together, our data highlight NMNH as a new NAD+ precursor with therapeutic potential for acute kidney injury, confirm the existence of a novel pathway for the recycling of reduced NAD+ precursors and establish NMNH as a member of the new family of reduced NAD+ precursors.


Assuntos
NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Células Epiteliais/efeitos dos fármacos , Homeostase , Humanos , Túbulos Renais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , NAD/genética , Mononucleotídeo de Nicotinamida/química , Traumatismo por Reperfusão
7.
Nat Metab ; 2(3): 215-216, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32694771
8.
Am J Clin Nutr ; 112(2): 413-426, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320006

RESUMO

BACKGROUND: Nicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic health effects after NR supplementation. OBJECTIVES: We aimed to investigate the effects of 6 wk NR supplementation on insulin sensitivity, mitochondrial function, and other metabolic health parameters in overweight and obese volunteers. METHODS: A randomized, double-blinded, placebo-controlled, crossover intervention study was conducted in 13 healthy overweight or obese men and women. Participants received 6 wk NR (1000 mg/d) and placebo supplementation, followed by broad metabolic phenotyping, including hyperinsulinemic-euglycemic clamps, magnetic resonance spectroscopy, muscle biopsies, and assessment of ex vivo mitochondrial function and in vivo energy metabolism. RESULTS: Markers of increased NAD+ synthesis-nicotinic acid adenine dinucleotide and methyl nicotinamide-were elevated in skeletal muscle after NR compared with placebo. NR increased body fat-free mass (62.65% ± 2.49% compared with 61.32% ± 2.58% in NR and placebo, respectively; change: 1.34% ± 0.50%, P = 0.02) and increased sleeping metabolic rate. Interestingly, acetylcarnitine concentrations in skeletal muscle were increased upon NR (4558 ± 749 compared with 3025 ± 316 pmol/mg dry weight in NR and placebo, respectively; change: 1533 ± 683 pmol/mg dry weight, P = 0.04) and the capacity to form acetylcarnitine upon exercise was higher in NR than in placebo (2.99 ± 0.30 compared with 2.40 ± 0.33 mmol/kg wet weight; change: 0.53 ± 0.21 mmol/kg wet weight, P = 0.01). However, no effects of NR were found on insulin sensitivity, mitochondrial function, hepatic and intramyocellular lipid accumulation, cardiac energy status, cardiac ejection fraction, ambulatory blood pressure, plasma markers of inflammation, or energy metabolism. CONCLUSIONS: NR supplementation of 1000 mg/d for 6 wk in healthy overweight or obese men and women increased skeletal muscle NAD+ metabolites, affected skeletal muscle acetylcarnitine metabolism, and induced minor changes in body composition and sleeping metabolic rate. However, no other metabolic health effects were observed.This trial was registered at clinicaltrials.gov as NCT02835664.


Assuntos
Acetilcarnitina/metabolismo , Composição Corporal/efeitos dos fármacos , Músculo Esquelético/metabolismo , Niacinamida/análogos & derivados , Obesidade/tratamento farmacológico , Sobrepeso/tratamento farmacológico , Idoso , Suplementos Nutricionais/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , NAD/biossíntese , Niacinamida/administração & dosagem , Obesidade/metabolismo , Obesidade/fisiopatologia , Sobrepeso/metabolismo , Sobrepeso/fisiopatologia , Compostos de Piridínio
9.
Sci Rep ; 9(1): 16753, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728067

RESUMO

Nudix (for nucleoside diphosphatases linked to other moieties, X) hydrolases are a diverse family of proteins capable of cleaving an enormous variety of substrates, ranging from nucleotide sugars to NAD+-capped RNAs. Although all the members of this superfamily share a common conserved catalytic motif, the Nudix box, their substrate specificity lies in specific sequence traits, which give rise to different subfamilies. Among them, NADH pyrophosphatases or diphosphatases (NADDs) are poorly studied and nothing is known about their distribution. To address this, we designed a Prosite-compatible pattern to identify new NADDs sequences. In silico scanning of the UniProtKB database showed that 3% of Nudix proteins were NADDs and displayed 21 different domain architectures, the canonical architecture (NUDIX-like_zf-NADH-PPase_NUDIX) being the most abundant (53%). Interestingly, NADD fungal sequences were prominent among eukaryotes, and were distributed over several Classes, including Pezizomycetes. Unexpectedly, in this last fungal Class, NADDs were found to be present from the most common recent ancestor to Tuberaceae, following a molecular phylogeny distribution similar to that previously described using two thousand single concatenated genes. Finally, when truffle-forming ectomycorrhizal Tuber melanosporum NADD was biochemically characterized, it showed the highest NAD+/NADH catalytic efficiency ratio ever described.


Assuntos
Biologia Computacional/métodos , Pirofosfatases/genética , Saccharomycetales/enzimologia , Simulação por Computador , Bases de Dados de Proteínas , Evolução Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Filogenia , Domínios Proteicos , Pirofosfatases/química , Pirofosfatases/metabolismo , Saccharomycetales/genética , Especificidade por Substrato
10.
Mol Metab ; 30: 192-202, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31767171

RESUMO

OBJECTIVE: A decay in intracellular NAD+ levels is one of the hallmarks of physiological decline in normal tissue functions. Accordingly, dietary supplementation with NAD+ precursors can prevent, alleviate, or even reverse multiple metabolic complications and age-related disorders in diverse model organisms. Within the constellation of NAD+ precursors, nicotinamide riboside (NR) has gained attention due to its potent NAD+ biosynthetic effects in vivo while lacking adverse clinical effects. Nevertheless, NR is not stable in circulation, and its utilization is rate-limited by the expression of nicotinamide riboside kinases (NRKs). Therefore, there is a strong interest in identifying new effective NAD+ precursors that can overcome these limitations. METHODS: Through a combination of metabolomics and pharmacological approaches, we describe how NRH, a reduced form of NR, serves as a potent NAD+ precursor in mammalian cells and mice. RESULTS: NRH acts as a more potent and faster NAD+ precursor than NR in mammalian cells and tissues. Despite the minor structural difference, we found that NRH uses different steps and enzymes to synthesize NAD+, thus revealing a new NRK1-independent pathway for NAD+ synthesis. Finally, we provide evidence that NRH is orally bioavailable in mice and prevents cisplatin-induced acute kidney injury. CONCLUSIONS: Our data identify a new pathway for NAD+ synthesis and classify NRH as a promising new therapeutic strategy to enhance NAD+ levels.


Assuntos
NAD/biossíntese , NAD/metabolismo , Niacinamida/análogos & derivados , Animais , Linhagem Celular , Masculino , Camundongos , Niacinamida/metabolismo , Niacinamida/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool) , Compostos de Piridínio , Ratos
11.
Sci Rep ; 9(1): 3230, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824723

RESUMO

Macrodomains constitute a conserved fold widely distributed that is not only able to bind ADP-ribose in its free and protein-linked forms but also can catalyse the hydrolysis of the latter. They are involved in the regulation of important cellular processes, such as signalling, differentiation, proliferation and apoptosis, and in host-virus response, and for this, they are considered as promising therapeutic targets to slow tumour progression and viral pathogenesis. Although extensive work has been carried out with them, including their classification into six distinct phylogenetically clades, little is known on bacterial macrodomains, especially if these latter are able to remove poly(ADP-ribose) polymer (PAR) from PARylated proteins, activity that only has been confirmed in human TARG1 (C6orf130) protein. To extend this limited knowledge, we demonstrate, after a comprehensive bioinformatic and phylogenetic analysis, that Fusobacterium mortiferum ATCC 9817 TARG1 (FmTARG1) is the first bacterial macrodomain shown to have high catalytic efficiency towards O-acyl-ADP-ribose, even more than hTARG1, and towards mono- and poly(ADPribosyl)ated proteins. Surprisingly, FmTARG1 gene is also inserted into a unique operonic context, only shared by the distantly related Fusobacterium perfoetens ATCC 29250 macrodomain, which include an immunity protein 51 domain, typical of bacterial polymorphic toxin systems.


Assuntos
Proteínas de Bactérias/química , Fusobacterium/metabolismo , Hidrolases/química , N-Glicosil Hidrolases/química , Poli Adenosina Difosfato Ribose/metabolismo , Domínios Proteicos , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Fusobacterium/genética , Humanos , Hidrolases/genética , Hidrolases/metabolismo , N-Glicosil Hidrolases/classificação , N-Glicosil Hidrolases/genética , Filogenia , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Homologia de Sequência de Aminoácidos , Temperatura , Tioléster Hidrolases/química , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
12.
Sci Rep ; 8(1): 8056, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795234

RESUMO

Poly-ADP-ribose polymerases (PARPs) are involved in the regulation of important cellular processes, such as DNA repair, aging and apoptosis, among others. They have been considered as promising therapeutic targets, since human cancer cells carrying BRCA1 and BRCA2 mutations are highly sensitive to human PARP-1 inhibitors. Although extensive work has been carried out with the latter enzyme, little is known on bacterial PARPs, of which only one has been demonstrated to be active. To extend this limited knowledge, we demonstrate that the Gram-positive bacterium Clostridioides difficile CD160 PARP is a highly active enzyme with a high production yield. Its phylogenetic analysis also pointed to a singular domain organization in contrast to other clostridiales, which could be due to the long-term divergence of C. difficile CD160. Surprisingly, its PARP becomes the first enzyme to be characterized from this strain, which has a genotype never before described based on its sequenced genome. Finally, the inhibition study carried out after a high-throughput in silico screening and an in vitro testing with hPARP1 and bacterial PARPs identified a different inhibitory profile, a new highly inhibitory compound never before described for hPARP1, and a specificity of bacterial PARPs for a compound that mimics NAD+ (EB-47).


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Clostridioides difficile/enzimologia , Infecções por Clostridium/tratamento farmacológico , NAD/análogos & derivados , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Bactérias/metabolismo , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/microbiologia , Humanos , Isoindóis/farmacologia , Modelos Moleculares , NAD/metabolismo , Filogenia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/química , Conformação Proteica
13.
PLoS One ; 12(7): e0181561, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750065

RESUMO

Nicotinamidases are amidohydrolases that convert nicotinamide into nicotinic acid, contributing to NAD+ homeostasis in most organisms. In order to increase the number of nicotinamidases described to date, this manuscript characterizes a nicotinamidase obtained from a metagenomic library fosmid clone (JFF054_F02) obtained from a geothermal water stream microbial mat community in a Japanese epithermal mine. The enzyme showed an optimum temperature of 90°C, making it the first hyperthermophilic bacterial nicotinamidase to be characterized, since the phylogenetic analysis of this fosmid clone placed it in a clade of uncultured geothermal bacteria. The enzyme, named as UbNic, not only showed an alkaline optimum pH, but also a biphasic pH dependence of its kcat, with a maximum at pH 9.5-10.0. The two pKa values obtained were 4.2 and 8.6 for pKes1 and pKes2, respectively. These results suggest a possible flexible catalytic mechanism for nicotinamidases, which reconciles the two previously proposed mechanisms. In addition, the enzyme showed a high catalytic efficiency, not only toward nicotinamide, but also toward other nicotinamide analogs. Its mutational analysis showed that a tryptophan (W83) is needed in one of the faces of the active site to maintain low Km values toward all the substrates tested. Furthermore, UbNic proved to contain a Fe2+ ion in its metal binding site, and was revealed to belong to a new nicotinamidase subgroup. All these characteristics, together with its high pH- and thermal stability, distinguish UbNic from previously described nicotinamidases, and suggest that a wide diversity of enzymes remains to be discovered in extreme environments.


Assuntos
Bactérias/enzimologia , Fontes Termais/microbiologia , Microbiota , Nicotinamidase/metabolismo , Rios/microbiologia , Microbiologia da Água , Aldeídos/metabolismo , Sequência de Aminoácidos , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Proteínas Mutantes/metabolismo , Nicotinamidase/antagonistas & inibidores , Nicotinamidase/química , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
14.
PLoS One ; 12(4): e0174759, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28388636

RESUMO

NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organismal homeostasis. Among the enzymes involved in its recycling, nicotinamide mononucleotide (NMN) deamidase is one of the key players in the bacterial pyridine nucleotide cycle, where it catalyzes the conversion of NMN into nicotinic acid mononucleotide (NaMN), which is later converted to NAD+ in the Preiss-Handler pathway. The biochemical characteristics of bacterial NMN deamidases have been poorly studied, although they have been investigated in some firmicutes, gamma-proteobacteria and actinobacteria. In this study, we present the first characterization of an NMN deamidase from an alphaproteobacterium, Agrobacterium tumefaciens (AtCinA). The enzyme was active over a broad pH range, with an optimum at pH 7.5. Moreover, the enzyme was quite stable at neutral pH, maintaining 55% of its activity after 14 days. Surprisingly, AtCinA showed the highest optimal (80°C) and melting (85°C) temperatures described for an NMN deamidase. The above described characteristics, together with its high catalytic efficiency, make AtCinA a promising biocatalyst for the production of pure NaMN. In addition, six mutants (C32A, S48A, Y58F, Y58A, T105A and R145A) were designed to study their involvement in substrate binding, and two (S31A and K63A) to determine their contribution to the catalysis. However, only four mutants (C32A, S48A Y58F and T105A) showed activity, although with reduced catalytic efficiency. These results, combined with a thermal and structural analysis, reinforce the Ser/Lys catalytic dyad mechanism as the most plausible among those proposed.


Assuntos
Agrobacterium tumefaciens/enzimologia , Amidoidrolases/metabolismo , Mutação , Sequência de Aminoácidos , Catálise , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Homologia de Sequência de Aminoácidos
15.
Hum Mol Genet ; 26(13): 2541-2550, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449065

RESUMO

Perrault syndrome (PS) is a rare recessive disorder characterized by ovarian dysgenesis and sensorineural deafness. It is clinically and genetically heterogeneous, and previously mutations have been described in different genes, mostly related to mitochondrial proteostasis. We diagnosed three unrelated females with PS and set out to identify the underlying genetic cause using exome sequencing. We excluded mutations in the known PS genes, but identified a single homozygous mutation in the ERAL1 gene (c.707A > T; p.Asn236Ile). Since ERAL1 protein binds to the mitochondrial 12S rRNA and is involved in the assembly of the small mitochondrial ribosomal subunit, the identified variant represented a likely candidate. In silico analysis of a 3D model for ERAL1 suggested that the mutated residue hinders protein-substrate interactions, potentially affecting its function. On a molecular basis, PS skin fibroblasts had reduced ERAL1 protein levels. Complexome profiling of the cells showed an overall decrease in the levels of assembled small ribosomal subunit, indicating that the ERAL1 variant affects mitochondrial ribosome assembly. Moreover, levels of the 12S rRNA were reduced in the patients, and were rescued by lentiviral expression of wild type ERAL1. At the physiological level, mitochondrial respiration was markedly decreased in PS fibroblasts, confirming disturbed mitochondrial function. Finally, knockdown of the C. elegans ERAL1 homologue E02H1.2 almost completely blocked egg production in worms, mimicking the compromised fertility in PS-affected women. Our cross-species data in patient cells and worms support the hypothesis that mutations in ERAL1 can cause PS and are associated with changes in mitochondrial metabolism.


Assuntos
Proteínas de Ligação ao GTP/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos/genética , Animais , Caenorhabditis elegans/genética , Exoma , Feminino , Proteínas de Ligação ao GTP/metabolismo , Disgenesia Gonadal 46 XX/metabolismo , Perda Auditiva Neurossensorial/metabolismo , Homozigoto , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Mutação de Sentido Incorreto/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequenciamento do Exoma
16.
Open Biol ; 7(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28446708

RESUMO

Macrodomains are ubiquitous conserved domains that bind or transform ADP-ribose (ADPr) metabolites. In humans, they are involved in transcription, X-chromosome inactivation, neurodegeneration and modulating PARP1 signalling, making them potential targets for therapeutic agents. Unfortunately, some aspects related to the substrate binding and catalysis of MacroD-like macrodomains still remain unclear, since mutation of the proposed catalytic aspartate does not completely abolish enzyme activity. Here, we present a functional and structural characterization of a macrodomain from the extremely halotolerant and alkaliphilic bacterium Oceanobacillus iheyensis (OiMacroD), related to hMacroD1/hMacroD2, shedding light on substrate binding and catalysis. The crystal structures of D40A, N30A and G37V mutants, and those with MES, ADPr and ADP bound, allowed us to identify five fixed water molecules that play a significant role in substrate binding. Closure of the ß6-α4 loop is revealed as essential not only for pyrophosphate recognition, but also for distal ribose orientation. In addition, a novel structural role for residue D40 is identified. Furthermore, it is revealed that OiMacroD not only catalyses the hydrolysis of O-acetyl-ADP-ribose but also reverses protein mono-ADP-ribosylation. Finally, mutant G37V supports the participation of a substrate-coordinated water molecule in catalysis that helps to select the proper substrate conformation.


Assuntos
Bacillaceae/metabolismo , Proteínas de Bactérias/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Água/química , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Hidrólise , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , O-Acetil-ADP-Ribose/síntese química , O-Acetil-ADP-Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Temperatura , Água/metabolismo
17.
Front Microbiol ; 7: 1915, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018295

RESUMO

Nicotinamidases catalyze the hydrolysis of the amide bond in nicotinamide (NAM) to produce ammonia and nicotinic acid (NA). These enzymes are an essential component of the NAD+ salvage pathway and are implicated in the viability of several pathogenic organisms. Its absence in humans makes them a promising drug target. In addition, although they are key analytical biocatalysts for screening modulators in relevant biomedical enzymes, such as sirtuins and poly-ADP-ribosyltransferases, no commercial sources are available. Surprisingly, the finding of an affordable source of nicotinamidase from metagenomic libraries is hindered by the absence of a suitable and fast screening method. In this manuscript, we describe the development of two new whole-cell methods using the chemical property of one of the products formed in the enzymatic reaction (pyrazinoic or NA) to form colored complexes with stable iron salts, such as ammonium ferrous sulfate or sodium nitroprusside (SNP). After optimization of the assay conditions, a fosmid polygenomic expression library obtained from deep-sea mesophilic bacteria was screened, discovering several positive clones with the ammonium ferrous sulfate method. Their quantitative rescreening with the SNP method allowed the finding of the first nicotinamidase with balanced catalytic efficiency toward NAM (nicotinamidase activity) and pyrazinamide (pyrazinamidase activity). Its biochemical characterization has also made possible the development of the first high-throughput whole-cell method for prescreening of new nicotinamidase inhibitors by the naked eye, saving time and costs in the design of future antimicrobial and antiparasitic agents.

18.
Nat Commun ; 7: 12077, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27363812

RESUMO

Inflammasomes are cytosolic molecular platforms that alert the immune system about the presence of infection. Here we report that zebrafish guanylate-binding protein 4 (Gbp4), an IFNγ-inducible GTPase protein harbouring a C-terminal CARD domain, is required for the inflammasome-dependent clearance of Salmonella Typhimurium (ST) by neutrophils in vivo. Despite the presence of the CARD domain, Gbp4 requires the universal inflammasome adaptor Asc for mediating its antibacterial function. In addition, the GTPase activity of Gbp4 is indispensable for inflammasome activation and ST clearance. Mechanistically, neutrophils are recruited to the infection site through the inflammasome-independent production of the chemokine (CXC motif) ligand 8 and leukotriene B4, and then mediate bacterial clearance through the Gbp4 inflammasome-dependent biosynthesis of prostaglandin D2. Our results point to GBPs as key inflammasome adaptors required for prostaglandin biosynthesis and bacterial clearance by neutrophils and suggest that transient activation of the inflammasome may be used to treat bacterial infections.


Assuntos
Proteínas de Ligação ao GTP/imunologia , Inflamassomos/imunologia , Neutrófilos/imunologia , Prostaglandina D2/biossíntese , Animais , Domínio de Ativação e Recrutamento de Caspases , Interleucina-8/imunologia , Leucotrieno B4/imunologia , Morfolinos , Organismos Geneticamente Modificados , Prostaglandinas/imunologia , Salmonella typhimurium , Peixe-Zebra
19.
PLoS One ; 8(2): e56727, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451075

RESUMO

Nicotinamidases catalyze the hydrolysis of nicotinamide to nicotinic acid and ammonia, an important reaction in the NAD(+) salvage pathway. This paper reports a new nicotinamidase from the deep-sea extremely halotolerant and alkaliphilic Oceanobacillus iheyensis HTE831 (OiNIC). The enzyme was active towards nicotinamide and several analogues, including the prodrug pyrazinamide. The enzyme was more nicotinamidase (kcat/Km  = 43.5 mM(-1)s(-1)) than pyrazinamidase (kcat/Km  = 3.2 mM(-1)s(-1)). Mutational analysis was carried out on seven critical amino acids, confirming for the first time the importance of Cys133 and Phe68 residues for increasing pyrazinamidase activity 2.9- and 2.5-fold, respectively. In addition, the change in the fourth residue involved in the ion metal binding (Glu65) was detrimental to pyrazinamidase activity, decreasing it 6-fold. This residue was also involved in a new distinct structural motif DAHXXXDXXHPE described in this paper for Firmicutes nicotinamidases. Phylogenetic analysis revealed that OiNIC is the first nicotinamidase described for the order Bacillales.


Assuntos
Bacillaceae/enzimologia , Nicotinamidase/metabolismo , Bacillaceae/genética , Niacinamida/metabolismo , Nicotinamidase/classificação , Nicotinamidase/genética , Filogenia , Pirazinamida/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...