Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4144, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842418

RESUMO

Quantum computing crucially relies on the ability to efficiently characterize the quantum states output by quantum hardware. Conventional methods which probe these states through direct measurements and classically computed correlations become computationally expensive when increasing the system size. Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors. Here, we realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological (SPT) phases of a spin model characterized by a non-zero string order parameter. We benchmark the performance of the QCNN based on approximate ground states of a family of cluster-Ising Hamiltonians which we prepare using a hardware-efficient, low-depth state preparation circuit. We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.

2.
Sci Rep ; 7(1): 1484, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469155

RESUMO

Single-photon states are basic resources for hybrid quantum technology with non-Gaussian states of light. Accelerating quantum technology is already able to produce high-quality single-photon states. These states can be used for hybrid quantum information processing, based on a nonclassical phase-space interference represented by negativity of a Wigner function. Therefore, new quantifiers, capable of evaluating such high-quality single-photon states, are required. We propose and analyze quantifiers which process multiple estimates of single-photon state's statistics. The quantifiers simulate basic capability of single photons to conditionally bunch into a single mode and form a Fock state. This state exhibits complex nonclassical phase-space interference effects making its Wigner function negative in multiple areas. The quantifiers directly evaluate a presence of the multiple negativities corresponding to the Fock state. We verify applicability of the quantifiers by using them to single-photon states from recent experiments. The quantifiers can be further extended to also test indistinguishability of single-photon states. It allows to verify quantum interference of light from single-photon emitters more sensitively than in the traditional Hong-Ou-Mandel test. Besides quantum optics, the multi-copy quantifiers can be also applied to experiments with atomic memories and mechanical oscillators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...