Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 373, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228621

RESUMO

High Salinity Shelf Water (HSSW) formed in the Ross Sea of Antarctica is a precursor to Antarctic Bottom Water (AABW), a water mass that constitutes the bottom limb of the global overturning circulation. HSSW production rates are poorly constrained, as in-situ observations are scarce. Here, we present high-vertical-and-temporal-resolution salinity time series collected in austral winter 2017 from a mooring in Terra Nova Bay (TNB), one of two major sites of HSSW production in the Ross Sea. We calculate an annual-average HSSW production rate of ~0.4 Sv (106 m3 s-1), which we use to ground truth additional estimates across 2012-2021 made from parametrized net surface heat fluxes. We find sub-seasonal and interannual variability on the order of [Formula: see text] [Formula: see text], with a strong dependence on variability in open-water area that suggests a sensitivity of TNB HSSW production rates to changes in the local wind regime and offshore sea ice pack.

3.
Geophys Res Lett ; 49(2): e2021GL095920, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35860604

RESUMO

The total rate of work done on the ocean by the wind is of considerable interest for understanding global energy balances, as the energy from the wind drives ocean currents, grows surface waves, and forces vertical mixing. A large but unknown fraction of this atmospheric energy is dissipated by turbulence in the upper ocean. The focus of this work is twofold. First, we describe a framework for evaluating the vertically integrated turbulent kinetic energy (TKE) equation using measurable quantities from a surface mooring, showing the connection to the atmospheric, mean oceanic, and wave energy. Second, we use this framework to evaluate turbulent energetics in the mixed layer using 10 months of mooring data. This evaluation is made possible by recent advances in estimating TKE dissipation rates from long-enduring moorings. We find that surface fluxes are balanced by TKE dissipation rates in the mixed layer to within a factor of two.

4.
J Geophys Res Oceans ; 124(1): 59-74, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30854275

RESUMO

We provide a large data set on salinity anomalies in the ocean's skin layer together with temperature anomalies and meteorological forcing. We observed an average salinity anomaly of 0.40 ± 0.41 practical salinity unity (n = 23,743), and in 83% of the observations the salinity anomaly was positive; that is, the skin layer was more saline. Temperature anomalies determined by an infrared camera were -0.23 ± 0.28 °C (upper 20-µm layer in reference to nominal 1-mm depth) and slightly warmer with -0.19 ± 0.25 °C in an upper 80-µm layer in reference to 1-m depth. In 75% of the observations, our data confirmed the presence of a cooler skin layer. Light rain rates (<4 mm/hr) induced an immediate freshening by 0.25 practical salinity unit in the skin layer without any effect in the mixed layer at 1-m depth. Vertical mixing by strong winds (12 m/s) masked freshening during a heavy rain fall (47 mm/hr) by the intrusion of saltier deeper waters, but a freshening was observed after the wind and rain calmed down. We computed density anomalies, which suggest that denser skin layers can remain afloat up to a density anomaly of 1.3 g/L, likely due to the interfacial tension between the skin layer and underlying bulk water. It implies that salinization by evaporation regulates buoyancy fluxes, a key process for the exchange of climate-relevant gases and heat between the ocean and atmosphere.

5.
Sci Rep ; 8(1): 11510, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065353

RESUMO

The sea-surface microlayer (SML) at the air-sea interface is a distinct, under-studied habitat compared to the subsurface and copepods, important components of ocean food webs, have developed key adaptations to exploit this niche. By using automated SML sampling, high-throughput sequencing and unmanned aerial vehicles, we report on the distribution and abundance of pontellid copepods in relation to the unique biophysicochemical signature of the SML. We found copepods in the SML even during high exposure to sun-derived ultraviolet radiation and their abundance was significantly correlated to increased algal biomass. We additionally investigated the significance of the pontellids' blue pigmentation and found that the reflectance peak of the blue pigment matched the water-leaving spectral radiance of the ocean surface. This feature could reduce high visibility at the air-sea boundary and potentially provide camouflage of copepods from their predators.

6.
Sci Adv ; 4(6): eaao7212, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29928691

RESUMO

Ice shelves control sea-level rise through frictional resistance, which slows the seaward flow of grounded glacial ice. Evidence from around Antarctica indicates that ice shelves are thinning and weakening, primarily driven by warm ocean water entering into the shelf cavities. We have identified a mechanism for ice shelf destabilization where basal channels underneath the shelves cause ice thinning that drives fracture perpendicular to flow. These channels also result in ice surface deformation, which diverts supraglacial rivers into the transverse fractures. We report direct evidence that a major 2016 calving event at Nansen Ice Shelf in the Ross Sea was the result of fracture driven by such channelized thinning and demonstrate that similar basal channel-driven transverse fractures occur elsewhere in Greenland and Antarctica. In the event of increased basal and surface melt resulting from rising ocean and air temperatures, ice shelves will become increasingly vulnerable to these tandem effects of basal channel destabilization.

7.
Nature ; 544(7650): 344-348, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28426005

RESUMO

Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...