Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IUCrJ ; 11(Pt 3): 279-286, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597878

RESUMO

The Protein Data Bank (PDB) was established as the first open-access digital data resource in biology and medicine in 1971 with seven X-ray crystal structures of proteins. Today, the PDB houses >210 000 experimentally determined, atomic level, 3D structures of proteins and nucleic acids as well as their complexes with one another and small molecules (e.g. approved drugs, enzyme cofactors). These data provide insights into fundamental biology, biomedicine, bioenergy and biotechnology. They proved particularly important for understanding the SARS-CoV-2 global pandemic. The US-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and other members of the Worldwide Protein Data Bank (wwPDB) partnership jointly manage the PDB archive and support >60 000 `data depositors' (structural biologists) around the world. wwPDB ensures the quality and integrity of the data in the ever-expanding PDB archive and supports global open access without limitations on data usage. The RCSB PDB research-focused web portal at https://www.rcsb.org/ (RCSB.org) supports millions of users worldwide, representing a broad range of expertise and interests. In addition to retrieving 3D structure data, PDB `data consumers' access comparative data and external annotations, such as information about disease-causing point mutations and genetic variations. RCSB.org also provides access to >1 000 000 computed structure models (CSMs) generated using artificial intelligence/machine-learning methods. To avoid doubt, the provenance and reliability of experimentally determined PDB structures and CSMs are identified. Related training materials are available to support users in their RCSB.org explorations.


Assuntos
COVID-19 , Bases de Dados de Proteínas , Conformação Proteica , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Biologia Computacional/métodos , Proteínas/química
2.
Patterns (N Y) ; 5(2): 100931, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370120

RESUMO

Molecular origami offers an offline way to explore the 3D structures of biology. Visit PDB101.rcsb.org to download free paper models of DNA, green fluorescent protein, viruses, and more.

3.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778399

RESUMO

Although the rapid development of therapeutic responses to combat SARS-CoV-2 represents a great human achievement, it also demonstrates untapped potential for advanced pandemic preparedness. Cross-species efficacy against multiple human coronaviruses by the main protease (MPro) inhibitor nirmatrelvir raises the question of its breadth of inhibition and our preparedness against future coronaviral threats. Herein, we describe sequence and structural analyses of 346 unique MPro enzymes from all coronaviruses represented in the NCBI Virus database. Cognate substrates of these representative proteases were inferred from their polyprotein sequences. We clustered MPro sequences based on sequence identity and AlphaFold2-predicted structures, showing approximate correspondence with known viral subspecies. Predicted structures of five representative MPros bound to their inferred cognate substrates showed high conservation in protease:substrate interaction modes, with some notable differences. Yeast-based proteolysis assays of the five representatives were able to confirm activity of three on inferred cognate substrates, and demonstrated that of the three, only one was effectively inhibited by nirmatrelvir. Our findings suggest that comprehensive preparedness against future potential coronaviral threats will require continued inhibitor development. Our methods may be applied to candidate coronaviral MPro inhibitors to evaluate in advance the breadth of their inhibition and identify target coronaviruses potentially meriting advanced development of alternative countermeasures.

4.
Nucleic Acids Res ; 51(D1): D488-D508, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36420884

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), founding member of the Worldwide Protein Data Bank (wwPDB), is the US data center for the open-access PDB archive. As wwPDB-designated Archive Keeper, RCSB PDB is also responsible for PDB data security. Annually, RCSB PDB serves >10 000 depositors of three-dimensional (3D) biostructures working on all permanently inhabited continents. RCSB PDB delivers data from its research-focused RCSB.org web portal to many millions of PDB data consumers based in virtually every United Nations-recognized country, territory, etc. This Database Issue contribution describes upgrades to the research-focused RCSB.org web portal that created a one-stop-shop for open access to ∼200 000 experimentally-determined PDB structures of biological macromolecules alongside >1 000 000 incorporated Computed Structure Models (CSMs) predicted using artificial intelligence/machine learning methods. RCSB.org is a 'living data resource.' Every PDB structure and CSM is integrated weekly with related functional annotations from external biodata resources, providing up-to-date information for the entire corpus of 3D biostructure data freely available from RCSB.org with no usage limitations. Within RCSB.org, PDB structures and the CSMs are clearly identified as to their provenance and reliability. Both are fully searchable, and can be analyzed and visualized using the full complement of RCSB.org web portal capabilities.


Assuntos
Inteligência Artificial , Bases de Dados de Proteínas , Proteínas , Aprendizado de Máquina , Conformação Proteica , Proteínas/química , Reprodutibilidade dos Testes
5.
Biochem Mol Biol Educ ; 51(2): 137-145, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36495283

RESUMO

Communication and collaboration are key science competencies that support sharing of scientific knowledge with experts and non-experts alike. On the one hand, they facilitate interdisciplinary conversations between students, educators, and researchers, while on the other they improve public awareness, enable informed choices, and impact policy decisions. Herein, we describe an interdisciplinary undergraduate course focused on using data from various bioinformatics data resources to explore the molecular underpinnings of diabetes mellitus (Types 1 and 2) and introducing students to science communication. Building on course materials and original student-generated artifacts, a series of collaborative activities engaged students, educators, researchers, healthcare professionals and community members in exploring, learning about, and discussing the molecular bases of diabetes. These collaborations generated novel educational materials and approaches to learning and presenting complex ideas about major global health challenges in formats accessible to diverse audiences.


Assuntos
Saúde Global , Estudantes , Humanos , Estudos Interdisciplinares , Aprendizagem , Comunicação , Comunicação Interdisciplinar
6.
Biophys Rev ; 14(6): 1281-1301, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36474933

RESUMO

As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) "Resolution Revolution" made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at the atomic level, direct electron detectors (DEDs), high-speed computing with graphics processing units, and rapid advances in data acquisition and processing software. 3DEM structure information (atomic coordinates and related metadata) are archived in the open-access Protein Data Bank (PDB), which currently holds more than 11,000 3DEM structures of proteins and nucleic acids, and their complexes with one another and small-molecule ligands (~ 6% of the archive). Underlying experimental data (3DEM density maps and related metadata) are stored in the Electron Microscopy Data Bank (EMDB), which currently holds more than 21,000 3DEM density maps. After describing the history of the PDB and the Worldwide Protein Data Bank (wwPDB) partnership, which jointly manages both the PDB and EMDB archives, this review examines the origins of the resolution revolution and analyzes its impact on structural biology viewed through the lens of PDB holdings. Six areas of focus exemplifying the impact of 3DEM across the biosciences are discussed in detail (icosahedral viruses, ribosomes, integral membrane proteins, SARS-CoV-2 spike proteins, cryogenic electron tomography, and integrative structure determination combining 3DEM with complementary biophysical measurement techniques), followed by a review of 3DEM structure validation by the wwPDB that underscores the importance of community engagement.

7.
Biomolecules ; 12(10)2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36291635

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the United States National Science Foundation, National Institutes of Health, and Department of Energy, supports structural biologists and Protein Data Bank (PDB) data users around the world. The RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, serves as the US data center for the global PDB archive housing experimentally-determined three-dimensional (3D) structure data for biological macromolecules. As the wwPDB-designated Archive Keeper, RCSB PDB is also responsible for the security of PDB data and weekly update of the archive. RCSB PDB serves tens of thousands of data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction) annually working on all permanently inhabited continents. RCSB PDB makes PDB data available from its research-focused web portal at no charge and without usage restrictions to many millions of PDB data consumers around the globe. It also provides educators, students, and the general public with an introduction to the PDB and related training materials through its outreach and education-focused web portal. This review article describes growth of the PDB, examines evolution of experimental methods for structure determination viewed through the lens of the PDB archive, and provides a detailed accounting of PDB archival holdings and their utilization by researchers, educators, and students worldwide.


Assuntos
Biologia Computacional , Proteínas , Humanos , Conformação Proteica , Bases de Dados de Proteínas , Biologia Computacional/métodos , Proteínas/química , Estudantes
8.
Protein Sci ; 31(12): e4482, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36281733

RESUMO

Now in its 52nd year of continuous operations, the Protein Data Bank (PDB) is the premiere open-access global archive housing three-dimensional (3D) biomolecular structure data. It is jointly managed by the Worldwide Protein Data Bank (wwPDB) partnership. The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) is funded by the National Science Foundation, National Institutes of Health, and US Department of Energy and serves as the US data center for the wwPDB. RCSB PDB is also responsible for the security of PDB data in its role as wwPDB-designated Archive Keeper. Every year, RCSB PDB serves tens of thousands of depositors of 3D macromolecular structure data (coming from macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction). The RCSB PDB research-focused web portal (RCSB.org) makes PDB data available at no charge and without usage restrictions to many millions of PDB data consumers around the world. The RCSB PDB training, outreach, and education web portal (PDB101.RCSB.org) serves nearly 700 K educators, students, and members of the public worldwide. This invited Tools Issue contribution describes how RCSB PDB (i) is organized; (ii) works with wwPDB partners to process new depositions; (iii) serves as the wwPDB-designated Archive Keeper; (iv) enables exploration and 3D visualization of PDB data via RCSB.org; and (v) supports training, outreach, and education via PDB101.RCSB.org. New tools and features at RCSB.org are presented using examples drawn from high-resolution structural studies of proteins relevant to treatment of human cancers by targeting immune checkpoints.


Assuntos
Biologia Computacional , Proteínas , Humanos , Conformação Proteica , Bases de Dados de Proteínas , Proteínas/química , Biologia Computacional/métodos , Substâncias Macromoleculares/química
10.
Protein Sci ; 31(1): 187-208, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34676613

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the US National Science Foundation, National Institutes of Health, and Department of Energy, has served structural biologists and Protein Data Bank (PDB) data consumers worldwide since 1999. RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, is the US data center for the global PDB archive housing biomolecular structure data. RCSB PDB is also responsible for the security of PDB data, as the wwPDB-designated Archive Keeper. Annually, RCSB PDB serves tens of thousands of three-dimensional (3D) macromolecular structure data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction) from all inhabited continents. RCSB PDB makes PDB data available from its research-focused RCSB.org web portal at no charge and without usage restrictions to millions of PDB data consumers working in every nation and territory worldwide. In addition, RCSB PDB operates an outreach and education PDB101.RCSB.org web portal that was used by more than 800,000 educators, students, and members of the public during calendar year 2020. This invited Tools Issue contribution describes (i) how the archive is growing and evolving as new experimental methods generate ever larger and more complex biomolecular structures; (ii) the importance of data standards and data remediation in effective management of the archive and facile integration with more than 50 external data resources; and (iii) new tools and features for 3D structure analysis and visualization made available during the past year via the RCSB.org web portal.


Assuntos
Biologia Computacional/história , Bases de Dados de Proteínas/história , Interface Usuário-Computador , Aniversários e Eventos Especiais , História do Século XX , História do Século XXI
11.
Protein Sci ; 31(1): 129-140, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34601771

RESUMO

The Protein Data Bank (PDB) archive is a rich source of information in the form of atomic-level three-dimensional (3D) structures of biomolecules experimentally determined using macromolecular crystallography, nuclear magnetic resonance (NMR) spectroscopy, and electron microscopy (3DEM). Originally established in 1971 as a resource for protein crystallographers to freely exchange data, today PDB data drive research and education across scientific disciplines. In 2011, the online portal PDB-101 was launched to support teachers, students, and the general public in PDB archive exploration (pdb101.rcsb.org). Maintained by the Research Collaboratory for Structural Bioinformatics PDB, PDB-101 aims to help train the next generation of PDB users and to promote the overall importance of structural biology and protein science to nonexperts. Regularly published features include the highly popular Molecule of the Month series, 3D model activities, molecular animation videos, and educational curricula. Materials are organized into various categories (Health and Disease, Molecules of Life, Biotech and Nanotech, and Structures and Structure Determination) and searchable by keyword. A biennial health focus frames new resource creation and provides topics for annual video challenges for high school students. Web analytics document that PDB-101 materials relating to fundamental topics (e.g., hemoglobin, catalase) are highly accessed year-on-year. In addition, PDB-101 materials created in response to topical health matters (e.g., Zika, measles, coronavirus) are well received. PDB-101 shows how learning about the diverse shapes and functions of PDB structures promotes understanding of all aspects of biology, from the central dogma of biology to health and disease to biological energy.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Animais , Cristalografia por Raios X , Humanos , Microscopia Eletrônica , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteômica
12.
Proteins ; 90(5): 1054-1080, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580920

RESUMO

Understanding the molecular evolution of the SARS-CoV-2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three-dimensional structures of SARS-CoV-2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein-protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein-protein and protein-nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.


Assuntos
COVID-19 , Pandemias , Aminoácidos , Humanos , Estudos Prospectivos , Proteoma , SARS-CoV-2 , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
Struct Dyn ; 8(2): 020401, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33728361

RESUMO

Knowledge about the structure and function of biomolecules continues to grow exponentially, enabling us to "see" structural snapshots of biomolecular interactions and functional assemblies. At PDB-101, the educational portal of the RCSB Protein Data Bank, we have taken a storytelling approach to make this body of knowledge accessible and comprehensible to a wide community of students, educators, and the general public. For over 20 years, the Molecule of the Month series has utilized a traditional illustrated storytelling approach that is regularly adapted for classroom instruction. Similar visual and interactive storytelling approaches are used to present topical subjects at PDB-101 and full curricular materials and case studies for building a detailed narrative around topics of particular interest. This emphasis on storytelling led to the Video Challenge for High School students, now in its 8th year. In this Article, we will present some of the lessons we have learned for teaching and communicating structural biology using the PDB archive of biomolecular structures.

15.
Nucleic Acids Res ; 49(D1): D437-D451, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33211854

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), the US data center for the global PDB archive and a founding member of the Worldwide Protein Data Bank partnership, serves tens of thousands of data depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without restrictions to millions of RCSB.org users around the world, including >660 000 educators, students and members of the curious public using PDB101.RCSB.org. PDB data depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy, 3D electron microscopy and micro-electron diffraction. PDB data consumers accessing our web portals include researchers, educators and students studying fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. During the past 2 years, the research-focused RCSB PDB web portal (RCSB.org) has undergone a complete redesign, enabling improved searching with full Boolean operator logic and more facile access to PDB data integrated with >40 external biodata resources. New features and resources are described in detail using examples that showcase recently released structures of SARS-CoV-2 proteins and host cell proteins relevant to understanding and addressing the COVID-19 global pandemic.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Substâncias Macromoleculares/química , Conformação Proteica , Proteínas/química , Bioengenharia/métodos , Pesquisa Biomédica/métodos , Biotecnologia/métodos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Substâncias Macromoleculares/metabolismo , Pandemias , Proteínas/genética , Proteínas/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Software , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
16.
bioRxiv ; 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33299989

RESUMO

Three-dimensional structures of SARS-CoV-2 and other coronaviral proteins archived in the Protein Data Bank were used to analyze viral proteome evolution during the first six months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48,000 viral proteome sequences showed how each one of the 29 viral study proteins have undergone amino acid changes. Structural models computed for every unique sequence variant revealed that most substitutions map to protein surfaces and boundary layers with a minority affecting hydrophobic cores. Conservative changes were observed more frequently in cores versus boundary layers/surfaces. Active sites and protein-protein interfaces showed modest numbers of substitutions. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for six drug discovery targets and four structural proteins comprising the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and functional interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.

18.
PLoS Biol ; 18(8): e3000815, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760062

RESUMO

Two illustrations integrate current knowledge about severe acute respiratory syndrome (SARS) coronaviruses and their life cycle. They have been widely used in education and outreach through free distribution as part of a coronavirus-related resource at Protein Data Bank (PDB)-101, the education portal of the RCSB PDB. Scientific sources for creation of the illustrations and examples of dissemination and response are presented.


Assuntos
Betacoronavirus/crescimento & desenvolvimento , Pesquisa Biomédica/educação , Infecções por Coronavirus/prevenção & controle , Bases de Dados de Proteínas , Medicina nas Artes , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Animais , Betacoronavirus/fisiologia , Pesquisa Biomédica/métodos , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Apresentação de Dados , Humanos , Disseminação de Informação/métodos , Estágios do Ciclo de Vida , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Mucosa Respiratória/virologia , SARS-CoV-2
19.
Biochem Mol Biol Educ ; 48(4): 350-355, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32558264

RESUMO

For 20 years, Molecule of the Month articles have highlighted the functional stories of 3D structures found in the Protein Data Bank (PDB). The PDB is the primary archive of atomic structures of biological molecules, currently providing open access to more than 150,000 structures studied by researchers around the world. The wealth of knowledge embodied in this resource is remarkable, with structures that allow exploration of nearly any biomolecular topic, including the basic science of genetic mechanisms, mechanisms of photosynthesis and bioenergetics, and central biomedical topics like cancer therapy and the fight against infectious disease. The central motivation behind the Molecule of the Month is to provide a user-friendly introduction to this rich body of data, charting a path for users to get started with finding and exploring the many available structures. The Molecule of the Month and related materials are updated regularly at the education portal PDB-101 (http://pdb101.rcsb.org/), offering an ongoing resource for molecular biology educators and students around the world.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Biologia Molecular/educação , Publicações Periódicas como Assunto/tendências , Proteínas/química , Proteínas/história , História do Século XX , História do Século XXI , Humanos , Conformação Proteica , Proteínas/metabolismo
20.
Protein Sci ; 29(1): 52-65, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31531901

RESUMO

Analyses of publicly available structural data reveal interesting insights into the impact of the three-dimensional (3D) structures of protein targets important for discovery of new drugs (e.g., G-protein-coupled receptors, voltage-gated ion channels, ligand-gated ion channels, transporters, and E3 ubiquitin ligases). The Protein Data Bank (PDB) archive currently holds > 155,000 atomic-level 3D structures of biomolecules experimentally determined using crystallography, nuclear magnetic resonance spectroscopy, and electron microscopy. The PDB was established in 1971 as the first open-access, digital-data resource in biology, and is now managed by the Worldwide PDB partnership (wwPDB; wwPDB.org). US PDB operations are the responsibility of the Research Collaboratory for Structural Bioinformatics PDB (RCSB PDB). The RCSB PDB serves millions of RCSB.org users worldwide by delivering PDB data integrated with ∼40 external biodata resources, providing rich structural views of fundamental biology, biomedicine, and energy sciences. Recently published work showed that the PDB archival holdings facilitated discovery of ∼90% of the 210 new drugs approved by the US Food and Drug Administration 2010-2016. We review user-driven development of RCSB PDB services, examine growth of the PDB archive in terms of size and complexity, and present examples and opportunities for structure-guided drug discovery for challenging targets (e.g., integral membrane proteins).


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Proteínas/química , Cristalografia , Descoberta de Drogas , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica , Conformação Proteica , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...