Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 6): 127214, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37797855

RESUMO

A novel strategy was designed and developed based of horseradish peroxidase (HRP)-mediated crosslinking of tyramine-functionalized starch (Tyr-St), tannic acid (TA) and phenolated-magnetic nanoparticles (Fe3O4-PhOH NPs), and simultaneous loading of doxorubicin hydrochloride (Dox) to afford a pH-responsive magnetic hydrogel-based drug delivery system (DDS) for synergistic in vitro chemo/hyperthermia therapy of human breast cancer (MCF-7) cells. The developed St-g-PTA/Fe3O4 magnetic hydrogel showed porous micro-structure with saturation magnetization (δs) value of 19.2 emu g-1 for Fe3O4 NPs content of ∼7.4 wt%. The pore sizes of the St-g-PTA/Fe3O4 hydrogel was calculated to be 2400 ± 200 nm-2. In vitro drug release experiments exhibited the developed DDS has pH-dependent drug release behavior, while at physiological pH (7.4) released only 30 % of the loaded drug after 100 h. Human serum albumin (HSA) adsorption capacities of the synthesized St/Fe3O4 and St-g-PTA/Fe3O4 magnetic hydrogels were obtained as 86 ± 2.2 and 77 ± 1.9 µgmg-1, respectively. The well-known MTT-assay approved the cytocompatibility of the developed St-g-PTA/Fe3O4 hydrogel, while the Dox-loaded system exhibited higher anti-cancer activity than those of the free Dox as verified by MTT-assay, and optical as well as florescent microscopies imaging. The synergistic chemo/hyperthermia therapy effect was also verified for the developed St-g-PTA/Fe3O4-Dox via hot water approach.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Hidrogéis , Amido , Doxorrubicina/química , Hipertermia Induzida/métodos , Fenômenos Magnéticos , Liberação Controlada de Fármacos
2.
Biology (Basel) ; 11(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36290377

RESUMO

The main aim of the current study is to fabricate an osteocompatible, bioactive, porous, and degradable bone tissue engineering scaffold. For this purpose, bioactive glasses (BGs) were chosen due to their similarity to bone's natural mineral composition, and the effect of replacing Ca ions with Sr on their properties were considered. First, strontium-containing BGs (Sr-BGs) were synthesized using the electrospinning technique and assembled by the sol-gel method, then they were incorporated into the alginate (Alg) matrix. Photographs of the scanning electron microscope (SEM) showed that the BG nanofibers have a diameter of 220 ± 36 nm, which was smaller than the precursor nanofibers (275 ± 66 nm). The scaffolds possess a porous internal microstructure (230-330 nm pore size) with interconnected pores. We demonstrated that the scaffolds could be degraded in the acetate sodium buffer and phosphate-buffered saline. The osteoactivity of the scaffolds was confirmed via visual inspection of the SEM illustrations after seven days of immersing them in the SBF solution. In vitro assessments disclosed that the produced Alg-based composites including Sr-BGs (Alg/Sr-BGs) are blood-compatible and biocompatible. Accumulating evidence shows that Alg/Sr-BG (5%, 10%, and 15%) hydrogels could be a promising scaffold for bone regeneration.

3.
Materials (Basel) ; 15(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35407826

RESUMO

3D nanocomposite scaffolds have attracted significant attention in bone tissue engineering applications. In the current study, we fabricated a 3D nanocomposite scaffold based on a bacterial polyglucuronic acid (PGU) and sodium alginate (Alg) composite with carbon nanofibers (CNFs) as the bone tissue engineering scaffold. The CNFs were obtained from electrospun polyacrylonitrile nanofibers through heat treatment. The fabricated CNFs were incorporated into a PGU/Alg polymeric solution, which was physically cross-linked using CaCl2 solution. The fabricated nanocomposites were characterized to evaluate the internal structure, porosity, swelling kinetics, hemocompatibility, and cytocompatibility. The characterizations indicated that the nanocomposites have a porous structure with interconnected pores architecture, proper water absorption, and retention characteristics. The in vitro studies revealed that the nanocomposites were hemocompatible with negligible hemolysis induction. The cell viability assessment showed that the nanocomposites were biocompatible and supported bone cell growth. These results indicated that the fabricated bacterial PGU/Alg/CNFs hydrogel nanocomposite exhibited appropriate properties and can be considered a new biomaterial for bone tissue engineering scaffolds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...