Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 241: 109729, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797736

RESUMO

In the search for new options for the pharmacological treatment of major depressive disorder, compounds with a rapid onset of action and high efficacy but lacking a psychotomimetic effect are of particular interest. In the present study, we evaluated the antidepressant potential of NitroSynapsin (NS) at behavioural, structural, and functional levels. NS is a memantine derivative and a dual allosteric N-methyl-d-aspartate receptors (NMDAR) antagonist using targeted delivery by the aminoadamantane of a warhead nitro group to inhibitory redox sites on the NMDAR. In a chronic restraint stress (CRS) mouse model of depression, five doses of NS administered on three consecutive days evoked antidepressant-like activity in the chronically stressed male C57BL/6J mice, reversing CRS-induced behavioural disturbances in sucrose preference and tail suspension tests. CRS-induced changes in morphology and density of dendritic spines in cerebrocortical neurons in the medial prefrontal cortex (mPFC) were also reversed by NS. Moreover, CRS-induced reduction in long-term potentiation (LTP) in the mPFC was found to be prevented by NS based on the electrophysiological recordings. Our study showed that NS restores structural and functional synaptic plasticity and reduces depressive behaviour to the level found in naïve animals. These results preliminarily revealed an antidepressant-like potency of NS.


Assuntos
Depressão , Transtorno Depressivo Maior , Camundongos , Animais , Masculino , Depressão/tratamento farmacológico , Córtex Pré-Frontal , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Modelos Animais de Doenças , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Biomolecules ; 12(5)2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35625541

RESUMO

Human S100B is a small, multifunctional protein. Its activity, inside and outside cells, contributes to the biology of the brain, muscle, skin, and adipocyte tissues. Overexpression of S100B occurs in Down Syndrome, Alzheimer's disease, Creutzfeldt-Jakob disease, schizophrenia, multiple sclerosis, brain tumors, epilepsy, melanoma, myocardial infarction, muscle disorders, and sarcopenia. Modulating the activities of S100B, related to human diseases, without disturbing its physiological functions, is vital for drug and therapy design. This work focuses on the extracellular activity of S100B and one of its receptors, the Receptor for Advanced Glycation End products (RAGE). The functional outcome of extracellular S100B, partially, depends on the activation of intracellular signaling pathways. Here, we used Biotin Switch Technique enrichment and mass-spectrometry-based proteomics to show that the appearance of the S100B protein in the extracellular milieu of the mammalian Chinese Hamster Ovary (CHO) cells, and expression of the membrane-bound RAGE receptor, lead to changes in the intracellular S-nitrosylation of, at least, more than a hundred proteins. Treatment of the wild-type CHO cells with nanomolar or micromolar concentrations of extracellular S100B modulates the sets of S-nitrosylation targets inside cells. The cellular S-nitrosome is tuned differently, depending on the presence or absence of stable RAGE receptor expression. The presented results are a proof-of-concept study, suggesting that S-nitrosylation, like other post-translational modifications, should be considered in future research, and in developing tailored therapies for S100B and RAGE receptor-related diseases.


Assuntos
Proteína S , Receptores Imunológicos , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Proteína S/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptores Imunológicos/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100
3.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576064

RESUMO

S-palmitoylation is a reversible covalent post-translational modification of cysteine thiol side chain by palmitic acid. S-palmitoylation plays a critical role in a variety of biological processes and is engaged in several human diseases. Therefore, identifying specific sites of this modification is crucial for understanding their functional consequences in physiology and pathology. We present a random forest (RF) classifier-based consensus strategy (RFCM-PALM) for predicting the palmitoylated cysteine sites on synaptic proteins from male/female mouse data. To design the prediction model, we have introduced a heuristic strategy for selection of the optimum set of physicochemical features from the AAIndex dataset using (a) K-Best (KB) features, (b) genetic algorithm (GA), and (c) a union (UN) of KB and GA based features. Furthermore, decisions from best-trained models of the KB, GA, and UN-based classifiers are combined by designing a three-star quality consensus strategy to further refine and enhance the scores of the individual models. The experiment is carried out on three categorized synaptic protein datasets of a male mouse, female mouse, and combined (male + female), whereas in each group, weighted data is used as training, and knock-out is used as the hold-out set for performance evaluation and comparison. RFCM-PALM shows ~80% area under curve (AUC) score in all three categories of datasets and achieve 10% average accuracy (male-15%, female-15%, and combined-7%) improvements on the hold-out set compared to the state-of-the-art approaches. To summarize, our method with efficient feature selection and novel consensus strategy shows significant performance gains in the prediction of S-palmitoylation sites in mouse datasets.


Assuntos
Algoritmos , Simulação por Computador , Lipoilação , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Animais , Bases de Dados de Proteínas , Feminino , Masculino , Camundongos
4.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200797

RESUMO

Although sex differences in the brain are prevalent, the knowledge about mechanisms underlying sex-related effects on normal and pathological brain functioning is rather poor. It is known that female and male brains differ in size and connectivity. Moreover, those differences are related to neuronal morphology, synaptic plasticity, and molecular signaling pathways. Among different processes assuring proper synapse functions are posttranslational modifications, and among them, S-palmitoylation (S-PALM) emerges as a crucial mechanism regulating synaptic integrity. Protein S-PALM is governed by a family of palmitoyl acyltransferases, also known as DHHC proteins. Here we focused on the sex-related functional importance of DHHC7 acyltransferase because of its S-PALM action over different synaptic proteins as well as sex steroid receptors. Using the mass spectrometry-based PANIMoni method, we identified sex-dependent differences in the S-PALM of synaptic proteins potentially involved in the regulation of membrane excitability and synaptic transmission as well as in the signaling of proteins involved in the structural plasticity of dendritic spines. To determine a mechanistic source for obtained sex-dependent changes in protein S-PALM, we analyzed synaptoneurosomes isolated from DHHC7-/- (DHHC7KO) female and male mice. Our data showed sex-dependent action of DHHC7 acyltransferase. Furthermore, we revealed that different S-PALM proteins control the same biological processes in male and female synapses.


Assuntos
Aciltransferases/fisiologia , Lipoilação , Plasticidade Neuronal , Neurônios/fisiologia , Processamento de Proteína Pós-Traducional , Sinapses/fisiologia , Transmissão Sináptica , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Fatores Sexuais
5.
Cells ; 10(1)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467671

RESUMO

The extracellular matrix (ECM) has been identified as a critical factor affecting synaptic function. It forms a functional scaffold that provides both the structural support and the reservoir of signaling molecules necessary for communication between cellular constituents of the central nervous system (CNS). Among numerous ECM components and modifiers that play a role in the physiological and pathological synaptic plasticity, matrix metalloproteinase 9 (MMP-9) has recently emerged as a key molecule. MMP-9 may contribute to the dynamic remodeling of structural and functional plasticity by cleaving ECM components and cell adhesion molecules. Notably, MMP-9 signaling was shown to be indispensable for long-term memory formation that requires synaptic remodeling. The core regulators of the dynamic reorganization of the actin cytoskeleton and cell adhesion are the Rho family of GTPases. These proteins have been implicated in the control of a wide range of cellular processes occurring in brain physiology and pathology. Here, we discuss the contribution of Rho GTPases to MMP-9-dependent signaling pathways in the brain. We also describe how the regulation of Rho GTPases by post-translational modifications (PTMs) can influence these processes.


Assuntos
Encéfalo/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Plasticidade Neuronal , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Antígeno CD56/metabolismo , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Sistema Nervoso Central/metabolismo , Distroglicanas/metabolismo , Matriz Extracelular/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Processamento de Proteína Pós-Traducional , Receptor EphB2/metabolismo , Transdução de Sinais , Sinapses/metabolismo
6.
J Biol Chem ; 295(18): 5970-5983, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32184353

RESUMO

Barttin is the accessory subunit of the human ClC-K chloride channels, which are expressed in both the kidney and inner ear. Barttin promotes trafficking of the complex it forms with ClC-K to the plasma membrane and is involved in activating this channel. Barttin undergoes post-translational palmitoylation that is essential for its functions, but the enzyme(s) catalyzing this post-translational modification is unknown. Here, we identified zinc finger DHHC-type containing 7 (DHHC7) protein as an important barttin palmitoyl acyltransferase, whose depletion affected barttin palmitoylation and ClC-K-barttin channel activation. We investigated the functional role of barttin palmitoylation in vivo in Zdhhc7-/- mice. Although palmitoylation of barttin in kidneys of Zdhhc7-/- animals was significantly decreased, it did not pathologically alter kidney structure and functions under physiological conditions. However, when Zdhhc7-/- mice were fed a low-salt diet, they developed hyponatremia and mild metabolic alkalosis, symptoms characteristic of human Bartter syndrome (BS) type IV. Of note, we also observed decreased palmitoylation of the disease-causing R8L barttin variant associated with human BS type IV. Our results indicate that dysregulated DHHC7-mediated barttin palmitoylation appears to play an important role in chloride channel dysfunction in certain BS variants, suggesting that targeting DHHC7 activity may offer a potential therapeutic strategy for reducing hypertension.


Assuntos
Aciltransferases/metabolismo , Canais de Cloreto/metabolismo , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional , Aciltransferases/deficiência , Aciltransferases/genética , Animais , Cães , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Rim/citologia , Rim/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Mutação , Fenótipo
7.
Cell Death Dis ; 10(11): 817, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659149

RESUMO

Intercellular communication within the bone marrow niche significantly promotes leukemogenesis and provides protection of leukemic cells from therapy. Secreted factors, intercellular transfer of mitochondria and the receptor-ligand interactions have been shown as mediators of this protection. Here we report that tunneling nanotubes (TNTs)-long, thin membranous structures, which have been identified as a novel mode of intercellular cross-talk-are formed in the presence of stroma and mediate transfer of cellular vesicles from stroma to leukemic cells. Importantly, transmission of vesicles via TNTs from stromal cells increases resistance of leukemic cells to the tyrosine kinase inhibitor, imatinib. Using correlative light-electron microscopy and electron tomography we show that stromal TNTs contain vesicles, provide membrane continuity with the cell bodies and can be open-ended. Moreover, trans-SILAC studies to reveal the non-autonomous proteome showed that specific sets of proteins are transferred together with cellular vesicles from stromal to leukemic cells, with a potential role in survival and adaptation. Altogether, our findings provide evidence for the biological role of the TNT-mediated vesicle exchange between stromal and leukemic cells, implicating the direct vesicle and protein transfer in the stroma-provided protection of leukemic cells.


Assuntos
Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Mitocôndrias/genética , Nanotubos/química , Transporte Biológico/genética , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mesilato de Imatinib/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Microscopia Eletrônica , Mitocôndrias/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Células Estromais/ultraestrutura
8.
Nat Commun ; 10(1): 3924, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477731

RESUMO

The serotonergic system and in particular serotonin 1A receptor (5-HT1AR) are implicated in major depressive disorder (MDD). Here we demonstrated that 5-HT1AR is palmitoylated in human and rodent brains, and identified ZDHHC21 as a major palmitoyl acyltransferase, whose depletion reduced palmitoylation and consequently signaling functions of 5-HT1AR. Two rodent models for depression-like behavior show reduced brain ZDHHC21 expression and attenuated 5-HT1AR palmitoylation. Moreover, selective knock-down of ZDHHC21 in the murine forebrain induced depression-like behavior. We also identified the microRNA miR-30e as a negative regulator of Zdhhc21 expression. Through analysis of the post-mortem brain samples in individuals with MDD that died by suicide we find that miR-30e expression is increased, while ZDHHC21 expression, as well as palmitoylation of 5-HT1AR, are reduced within the prefrontal cortex. Our study suggests that downregulation of 5-HT1AR palmitoylation is a mechanism involved in depression, making the restoration of 5-HT1AR palmitoylation a promising clinical strategy for the treatment of MDD.


Assuntos
Encéfalo/fisiopatologia , Depressão/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Receptor 5-HT1A de Serotonina/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Depressão/genética , Depressão/metabolismo , Transtorno Depressivo Maior/genética , Regulação da Expressão Gênica , Humanos , Lipoilação , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Ratos Wistar , Receptor 5-HT1A de Serotonina/genética
9.
Mol Cell Proteomics ; 18(10): 1916-1938, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31311849

RESUMO

The precise regulation of synaptic integrity is critical for neuronal network connectivity and proper brain function. Essential aspects of the activity and localization of synaptic proteins are regulated by posttranslational modifications. S-palmitoylation is a reversible covalent modification of the cysteine with palmitate. It modulates affinity of the protein for cell membranes and membranous compartments. Intracellular palmitoylation dynamics are regulated by crosstalk with other posttranslational modifications, such as S-nitrosylation. S-nitrosylation is a covalent modification of cysteine thiol by nitric oxide and can modulate protein functions. Therefore, simultaneous identification of endogenous site-specific proteomes of both cysteine modifications under certain biological conditions offers new insights into the regulation of functional pathways. Still unclear, however, are the ways in which this crosstalk is affected in brain pathology, such as stress-related disorders. Using a newly developed mass spectrometry-based approach Palmitoylation And Nitrosylation Interplay Monitoring (PANIMoni), we analyzed the endogenous S-palmitoylation and S-nitrosylation of postsynaptic density proteins at the level of specific single cysteine in a mouse model of chronic stress. Among a total of 813 S-PALM and 620 S-NO cysteine sites that were characterized on 465 and 360 proteins, respectively, we sought to identify those that were differentially affected by stress. Our data show involvement of S-palmitoylation and S-nitrosylation crosstalk in the regulation of 122 proteins including receptors, scaffolding proteins, regulatory proteins and cytoskeletal components. Our results suggest that atypical crosstalk between the S-palmitoylation and S-nitrosylation interplay of proteins involved in synaptic transmission, protein localization and regulation of synaptic plasticity might be one of the main events associated with chronic stress disorder, leading to destabilization in synaptic networks.


Assuntos
Neurônios/citologia , Óxido Nítrico/metabolismo , Proteômica/métodos , Estresse Fisiológico , Sinapses/metabolismo , Animais , Células Cultivadas , Cromatografia Líquida , Cisteína/metabolismo , Regulação da Expressão Gênica , Lipoilação , Masculino , Camundongos , Plasticidade Neuronal , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Espectrometria de Massas em Tandem
10.
Int J Mol Sci ; 20(7)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965559

RESUMO

Ketamine is an N-methyl-d-aspartate receptor antagonist that has gained wide attention as a potent antidepressant. It has also been recently reported to have prophylactic effects in animal models of depression and anxiety. Alterations of neuroplasticity in different brain regions; such as the hippocampus; prefrontal cortex; and amygdala; are a hallmark of stress-related disorders; and such changes may endure beyond the treatment of symptoms. The present study investigated whether a prophylactic injection of ketamine has effects on structural plasticity in the brain in mice that are subjected to chronic unpredictable stress followed by an 8-day recovery period. Ketamine administration (3 mg/kg body weight) 1 h before stress exposure increased the number of resilient animals immediately after the cessation of stress exposure and positively influenced the recovery of susceptible animals to hedonic deficits. At the end of the recovery period; ketamine-treated animals exhibited significant differences in dendritic spine density and dendritic spine morphology in brain regions associated with depression compared with saline-treated animals. These results confirm previous findings of the prophylactic effects of ketamine and provide further evidence of an association between the antidepressant-like effect of ketamine and alterations of structural plasticity in the brain.


Assuntos
Antidepressivos/uso terapêutico , Região CA3 Hipocampal/efeitos dos fármacos , Depressão/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Ketamina/uso terapêutico , Plasticidade Neuronal/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Animais , Comportamento Animal , Depressão/patologia , Modelos Animais de Doenças , Elevação dos Membros Posteriores/fisiologia , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Restrição Física/fisiologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/patologia
11.
Cereb Cortex ; 29(1): 283-304, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228131

RESUMO

In the central nervous system, several forms of experience-dependent plasticity, learning and memory require the activity-dependent control of synaptic efficacy. Despite substantial progress in describing synaptic plasticity, mechanisms related to heterogeneity of synaptic functions at local circuits remain elusive. Here we studied the functional and molecular aspects of hippocampal circuit plasticity by analyzing excitatory synapses at basal and apical dendrites of mouse hippocampal pyramidal cells (CA1 region) in acute brain slices. In the past decade, activity of metalloproteinases (MMPs) has been implicated as a widespread and critical factor in plasticity mechanisms at various projections in the CNS. However, in the present study we discovered that in striking contrast to apical dendrites, synapses located within basal dendrites undergo MMP-independent synaptic potentiation. We demonstrate that synapse-specific molecular pathway allowing MMPs to rapidly upregulate function of NMDARs in stratum radiatum involved protease activated receptor 1 and intracellular kinases and GTPases activity. In contrast, MMP-independent scaling of synaptic strength in stratum oriens involved dopamine D1/D5 receptors and Src kinases. Results of this study reveal that 2 neighboring synaptic systems differ significantly in extracellular and intracellular cascades that control synaptic gain and provide long-searched transduction pathways relevant for MMP-dependent synaptic plasticity.


Assuntos
Dendritos/fisiologia , Líquido Extracelular/fisiologia , Hipocampo/fisiologia , Líquido Intracelular/fisiologia , Células Piramidais/fisiologia , Potenciais Sinápticos/fisiologia , Animais , Hipocampo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Sinapses/fisiologia
12.
Front Mol Neurosci ; 11: 175, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29910712

RESUMO

S-palmitoylation (S-PALM) is a lipid modification that involves the linkage of a fatty acid chain to cysteine residues of the substrate protein. This common posttranslational modification (PTM) is unique among other lipid modifications because of its reversibility. Hence, like phosphorylation or ubiquitination, it can act as a switch that modulates various important physiological pathways within the cell. Numerous studies revealed that S-PALM plays a crucial role in protein trafficking and function throughout the nervous system. Notably, the dynamic turnover of palmitate on proteins at the synapse may provide a key mechanism for rapidly changing synaptic strength. Indeed, palmitate cycling on postsynaptic density-95 (PSD-95), the major postsynaptic density protein at excitatory synapses, regulates the number of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and thus affects synaptic transmission. Accumulating evidence suggests a relationship between impairments in S-PALM and severe neurological disorders. Therefore, determining the precise levels of S-PALM may be essential for understanding the ways in which this PTM is regulated in the brain and controls synaptic dynamics. Protein S-PALM can be characterized using metabolic labeling methods and biochemical tools. Both approaches are discussed herein in the context of specific methods and their advantages and disadvantages. This review clearly shows progress in the field, which has led to the development of new, more sensitive techniques that enable the detection of palmitoylated proteins and allow predictions of potential palmitate binding sites. Unfortunately, one significant limitation of these approaches continues to be the inability to use them in living cells.

13.
Mol Cell Proteomics ; 17(2): 233-254, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217618

RESUMO

Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria that induces strong proinflammatory reactions of mammals. These processes are triggered upon sequential binding of LPS to CD14, a GPI-linked plasma membrane raft protein, and to the TLR4/MD2 receptor complex. We have found earlier that upon LPS binding, CD14 triggers generation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], a lipid controlling subsequent proinflammatory cytokine production. Here we show that stimulation of RAW264 macrophage-like cells with LPS induces global changes of the level of fatty-acylated, most likely palmitoylated, proteins. Among the acylated proteins that were up-regulated in those conditions were several enzymes of the phosphatidylinositol cycle. Global profiling of acylated proteins was performed by metabolic labeling of RAW264 cells with 17ODYA, an analogue of palmitic acid functionalized with an alkyne group, followed by detection and enrichment of labeled proteins using biotin-azide/streptavidin and their identification with mass spectrometry. This proteomic approach revealed that 154 fatty-acylated proteins were up-regulated, 186 downregulated, and 306 not affected in cells stimulated with 100 ng/ml LPS for 60 min. The acylated proteins affected by LPS were involved in diverse biological functions, as found by Ingenuity Pathway Analysis. Detailed studies of 17ODYA-labeled and immunoprecipitated proteins revealed that LPS induces S-palmitoylation, hence activation, of type II phosphatidylinositol 4-kinase (PI4KII) ß, which phosphorylates phosphatidylinositol to phosphatidylinositol 4-monophosphate, a PI(4,5)P2 precursor. Silencing of PI4KIIß and PI4KIIα inhibited LPS-induced expression and production of proinflammatory cytokines, especially in the TRIF-dependent signaling pathway of TLR4. Reciprocally, this LPS-induced signaling pathway was significantly enhanced after overexpression of PI4KIIß or PI4KIIα; this was dependent on palmitoylation of the kinases. However, the S-palmitoylation of PI4KIIα, hence its activity, was constitutive in RAW264 cells. Taken together the data indicate that LPS triggers S-palmitoylation and activation of PI4KIIß, which generates PI(4)P involved in signaling pathways controlling production of proinflammatory cytokines.


Assuntos
Lipopolissacarídeos/farmacologia , Lipoilação , Antígenos de Histocompatibilidade Menor/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Proteômica , Regulação para Cima
14.
PLoS One ; 11(5): e0154822, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27159591

RESUMO

Mammalian S100B protein plays multiple important roles in cellular brain processes. The protein is a clinically used marker for several pathologies including brain injury, neurodegeneration and cancer. High levels of S100B released by astrocytes in Down syndrome patients are responsible for reduced neurogenesis of neural progenitor cells and induction of cell death in neurons. Despite increasing understanding of S100B biology, there are still many questions concerning the detailed molecular mechanisms that determine specific activities of S100B. Elevated overexpression of S100B protein is often synchronized with increased nitric oxide-related activity. In this work we show S100B is a target of exogenous S-nitrosylation in rat brain protein lysate and identify endogenous S-nitrosylation of S100B in a cellular model of astrocytes. Biochemical studies are presented indicating S-nitrosylation tunes the conformation of S100B and modulates its Ca2+ and Zn2+ binding properties. Our in vitro results suggest that the possibility of endogenous S-nitrosylation should be taken into account in the further studies of in vivo S100B protein activity, especially under conditions of increased NO-related activity.


Assuntos
Astrócitos/metabolismo , Metais/metabolismo , Compostos Nitrosos/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Sequência de Aminoácidos , Animais , Calorimetria , Linhagem Celular Tumoral , Masculino , Espectrometria de Massas , Concentração Osmolar , Ligação Proteica , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/química , Homologia de Sequência de Aminoácidos
15.
Mol Cell Proteomics ; 13(9): 2288-305, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24895380

RESUMO

Alzheimer's disease (AD) is characterized by an early synaptic loss, which strongly correlates with the severity of dementia. The pathogenesis and causes of characteristic AD symptoms are not fully understood. Defects in various cellular cascades were suggested, including the imbalance in production of reactive oxygen and nitrogen species. Alterations in S-nitrosylation of several proteins were previously demonstrated in various AD animal models and patients. In this work, using combined biotin-switch affinity/nano-LC-MS/MS and bioinformatic approaches we profiled endogenous S-nitrosylation of brain synaptosomal proteins from wild type and transgenic mice overexpressing mutated human Amyloid Precursor Protein (hAPP). Our data suggest involvement of S-nitrosylation in the regulation of 138 synaptic proteins, including MAGUK, CamkII, or synaptotagmins. Thirty-eight proteins were differentially S-nitrosylated in hAPP mice only. Ninety-five S-nitrosylated peptides were identified for the first time (40% of total, including 33 peptides exclusively in hAPP synaptosomes). We verified differential S-nitrosylation of 10 (26% of all identified) synaptosomal proteins from hAPP mice, by Western blotting with specific antibodies. Functional enrichment analysis linked S-nitrosylated proteins to various cellular pathways, including: glycolysis, gluconeogenesis, calcium homeostasis, ion, and vesicle transport, suggesting a basic role of this post-translational modification in the regulation of synapses. The linkage of SNO-proteins to axonal guidance and other processes related to APP metabolism exclusively in the hAPP brain, implicates S-nitrosylation in the pathogenesis of Alzheimer's disease.


Assuntos
Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Processamento de Proteína Pós-Traducional , S-Nitrosotióis/metabolismo , Sinapses/metabolismo , Animais , Feminino , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Sinaptossomos
16.
J Biol Chem ; 287(48): 40457-70, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22989881

RESUMO

BACKGROUND: S100A1 protein is a proposed target of molecule-guided therapy for heart failure. RESULTS: S-Nitrosylation of S100A1 is present in cells, increases Ca(2+) binding, and tunes the overall protein conformation. CONCLUSION: Thiol-aromatic molecular switch is responsible for NO-related modification of S100A1 properties. SIGNIFICANCE: Post-translational S-nitrosylation may provide functional diversity and specificity to S100A1 and other S100 protein family members. S100A1 is a member of the Ca(2+)-binding S100 protein family. It is expressed in brain and heart tissue, where it plays a crucial role as a modulator of Ca(2+) homeostasis, energy metabolism, neurotransmitter release, and contractile performance. Biological effects of S100A1 have been attributed to its direct interaction with a variety of target proteins. The (patho)physiological relevance of S100A1 makes it an important molecular target for future therapeutic intervention. S-Nitrosylation is a post-translational modification of proteins, which plays a role in cellular signal transduction under physiological and pathological conditions. In this study, we confirmed that S100A1 protein is endogenously modified by Cys(85) S-nitrosylation in PC12 cells, which are a well established model system for studying S100A1 function. We used isothermal calorimetry to show that S-nitrosylation facilitates the formation of Ca(2+)-loaded S100A1 at physiological ionic strength conditions. To establish the unique influence of the S-nitroso group, our study describes high resolution three-dimensional structures of human apo-S100A1 protein with the Cys(85) thiol group in reduced and S-nitrosylated states. Solution structures of the proteins are based on NMR data obtained at physiological ionic strength. Comparative analysis shows that S-nitrosylation fine tunes the overall architecture of S100A1 protein. Although the typical S100 protein intersubunit four-helix bundle is conserved upon S-nitrosylation, the conformation of S100A1 protein is reorganized at the sites most important for target recognition (i.e. the C-terminal helix and the linker connecting two EF-hand domains). In summary, this study discloses cysteine S-nitrosylation as a new factor responsible for increasing functional diversity of S100A1 and helps explain the role of S100A1 as a Ca(2+) signal transmitter sensitive to NO/redox equilibrium within cells.


Assuntos
Óxido Nítrico/metabolismo , Proteínas S100/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Humanos , Cinética , Células PC12 , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Ratos , Proteínas S100/química , Proteínas S100/genética
17.
Biochem J ; 429(1): 73-83, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20397974

RESUMO

Several studies focusing on elucidating the mechanism of NO (nitric oxide) signalling in plant cells have highlighted that its biological effects are partly mediated by protein kinases. The identity of these kinases and details of how NO modulates their activities, however, remain poorly investigated. In the present study, we have attempted to clarify the mechanisms underlying NO action in the regulation of NtOSAK (Nicotiana tabacum osmotic stress-activated protein kinase), a member of the SNF1 (sucrose non-fermenting 1)-related protein kinase 2 family. We found that in tobacco BY-2 (bright-yellow 2) cells exposed to salt stress, NtOSAK is rapidly activated, partly through a NO-dependent process. This activation, as well as the one observed following treatment of BY-2 cells with the NO donor DEA/NO (diethylamine-NONOate), involved the phosphorylation of two residues located in the kinase activation loop, one being identified as Ser158. Our results indicate that NtOSAK does not undergo the direct chemical modifications of its cysteine residues by S-nitrosylation. Using a co-immunoprecipitation-based strategy, we identified several proteins present in immunocomplex with NtOSAK in salt-treated cells including the glycolytic enzyme GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Our results indicate that NtOSAK directly interacts with GAPDH in planta. Furthermore, in response to salt, GAPDH showed a transient increase in its S-nitrosylation level which was correlated with the time course of NtOSAK activation. However, GADPH S-nitrosylation did not influence its interaction with NtOSAK and did not have an impact on the activity of the protein kinase. Taken together, the results support the hypothesis that NtOSAK and GAPDH form a cellular complex and that both proteins are regulated directly or indirectly by NO.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/fisiologia , Nicotiana/enzimologia , Óxido Nítrico/fisiologia , Osmose/fisiologia , Proteínas de Plantas/fisiologia , Proteínas Quinases/metabolismo , Salinidade , Estresse Fisiológico/fisiologia , Sequência de Aminoácidos , Células Cultivadas , Dados de Sequência Molecular , Proteínas Quinases/fisiologia , Nicotiana/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...