Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(4): e3002562, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564513

RESUMO

Methods sections are often missing essential details. Methodological shortcut citations, in which authors cite previous papers instead of describing the method in detail, may contribute to this problem. This meta-research study used 3 approaches to examine shortcut citation use in neuroscience, biology, and psychiatry. First, we assessed current practices in more than 750 papers. More than 90% of papers used shortcut citations. Other common reasons for using citations in the methods included giving credit or specifying what was used (who or what citation) and providing context or a justification (why citation). Next, we reviewed 15 papers to determine what can happen when readers follow shortcut citations to find methodological details. While shortcut citations can be used effectively, they can also deprive readers of essential methodological details. Problems encountered included difficulty identifying or accessing the cited materials, missing or insufficient descriptions of the cited method, and shortcut citation chains. Third, we examined journal policies. Fewer than one quarter of journals had policies describing how authors should report previously described methods. We propose that methodological shortcut citations should meet 3 criteria; cited resources should provide (1) a detailed description of (2) the method used by the citing authors', and (3) be open access. Resources that do not meet these criteria should be cited to give credit, but not as shortcut citations. We outline actions that authors and journals can take to use shortcut citations responsibly, while fostering a culture of open and reproducible methods reporting.


Assuntos
Neurociências , Políticas
2.
Neuron ; 110(17): 2815-2835.e13, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35809574

RESUMO

Dynamin mediates fission of vesicles from the plasma membrane during endocytosis. Typically, dynamin is recruited from the cytosol to endocytic sites, requiring seconds to tens of seconds. However, ultrafast endocytosis in neurons internalizes vesicles as quickly as 50 ms during synaptic vesicle recycling. Here, we demonstrate that Dynamin 1 is pre-recruited to endocytic sites for ultrafast endocytosis. Specifically, Dynamin 1xA, a splice variant of Dynamin 1, interacts with Syndapin 1 to form molecular condensates on the plasma membrane. Single-particle tracking of Dynamin 1xA molecules confirms the liquid-like property of condensates in vivo. When Dynamin 1xA is mutated to disrupt its interaction with Syndapin 1, the condensates do not form, and consequently, ultrafast endocytosis slows down by 100-fold. Mechanistically, Syndapin 1 acts as an adaptor by binding the plasma membrane and stores Dynamin 1xA at endocytic sites. This cache bypasses the recruitment step and accelerates endocytosis at synapses.


Assuntos
Dinamina I , Vesículas Sinápticas , Dinamina I/genética , Dinamina I/metabolismo , Dinaminas/metabolismo , Endocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Vesículas Sinápticas/metabolismo
3.
J Neurosci ; 40(49): 9372-9385, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139401

RESUMO

Efficient neurotransmitter release at the presynaptic terminal requires docking of synaptic vesicles to the active zone membrane and formation of fusion-competent synaptic vesicles near voltage-gated Ca2+ channels. Rab3-interacting molecule (RIM) is a critical active zone organizer, as it recruits Ca2+ channels and activates synaptic vesicle docking and priming via Munc13-1. However, our knowledge about Munc13-independent contributions of RIM to active zone functions is limited. To identify the functions that are solely mediated by RIM, we used genetic manipulations to control RIM and Munc13-1 activity in cultured hippocampal neurons from mice of either sex and compared synaptic ultrastructure and neurotransmission. We found that RIM modulates synaptic vesicle localization in the proximity of the active zone membrane independent of Munc13-1. In another step, both RIM and Munc13 mediate synaptic vesicle docking and priming. In addition, while the activity of both RIM and Munc13-1 is required for Ca2+-evoked release, RIM uniquely controls neurotransmitter release efficiency. However, activity-dependent augmentation of synaptic vesicle pool size relies exclusively on the action of Munc13s. Based on our results, we extend previous findings and propose a refined model in which RIM and Munc13-1 act in overlapping and independent stages of synaptic vesicle localization and release.SIGNIFICANCE STATEMENT The presynaptic active zone is composed of scaffolding proteins that functionally interact to localize synaptic vesicles to release sites, ensuring neurotransmission. Our current knowledge of the presynaptic active zone function relies on structure-function analysis, which has provided detailed information on the network of interactions and the impact of active zone proteins. Yet, the hierarchical, redundant, or independent cooperation of each active zone protein to synapse functions is not fully understood. Rab3-interacting molecule and Munc13 are the two key functionally interacting active zone proteins. Here, we dissected the distinct actions of Rab3-interacting molecule and Munc13-1 from both ultrastructural and physiological aspects. Our findings provide a more detailed view of how these two presynaptic proteins orchestrate their functions to achieve synaptic transmission.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Células Cultivadas , Fenômenos Eletrofisiológicos , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Neurotransmissores/metabolismo , Vesículas Sinápticas/ultraestrutura
4.
Cell Rep ; 32(5): 107960, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755572

RESUMO

At the presynaptic active zone, action-potential-triggered neurotransmitter release requires that fusion-competent synaptic vesicles are placed next to Ca2+ channels. The active zone resident proteins RIM, RBP, and Munc13 are essential contributors for vesicle priming and Ca2+-channel recruitment. Although the individual contributions of these scaffolds have been extensively studied, their respective functions in neurotransmission are still incompletely understood. Here, we analyze the functional interactions of RIMs, RBPs, and Munc13s at the genetic, molecular, functional, and ultrastructural levels in a mammalian synapse. We find that RBP, together with Munc13, promotes vesicle priming at the expense of RBP's role in recruiting presynaptic Ca2+ channels, suggesting that the support of RBP for vesicle priming and Ca2+-secretion coupling is mutually exclusive. Our results demonstrate that the functional interaction of RIM, RBP, and Munc13 is more profound than previously envisioned, acting as a functional trio that govern basic and short-term plasticity properties of neurotransmission.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/metabolismo , Proteínas rab3 de Ligação ao GTP/metabolismo , Animais , Cálcio/metabolismo , Deleção de Genes , Células HEK293 , Hipocampo/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neurônios/ultraestrutura , Fenótipo , Terminações Pré-Sinápticas/metabolismo , Ligação Proteica , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura
5.
Cell Rep ; 32(3): 107926, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32698012

RESUMO

The neuronal protein complexin contains multiple domains that exert clamping and facilitatory functions to tune spontaneous and action potential-triggered synaptic release. We address the clamping mechanism and show that the accessory helix of complexin arrests assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex that forms the core machinery of intracellular membrane fusion. In a reconstituted fusion assay, site- and stage-specific photo-cross-linking reveals that, prior to fusion, the complexin accessory helix laterally binds the membrane-proximal C-terminal ends of SNAP25 and VAMP2. Corresponding complexin interface mutants selectively increase spontaneous release of neurotransmitters in living neurons, implying that the accessory helix suppresses final zippering/assembly of the SNARE four-helix bundle by restraining VAMP2 and SNAP25.


Assuntos
Membrana Celular/metabolismo , Exocitose , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Cálcio/metabolismo , Reagentes de Ligações Cruzadas/química , Humanos , Luz , Fusão de Membrana , Modelos Biológicos , Proteínas Mutantes/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Proteolipídeos/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...