Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0290304, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37590303

RESUMO

The diversity of life sensu lato comprises both biological and cultural diversity, described as "biocultural diversity." Similar to plant and animal species, cultures and languages are threatened by extinction. Since drylands are pivotal systems for nature and people alike, we use oases in the Sahara Desert as model systems for examining spatial patterns and trends of biocultural diversity. We identify both the underlying drivers of biodiversity and the potential proxies that are fundamental for understanding reciprocal linkages between biological and cultural diversity in oases. Using oases in Algeria as an example we test current indices describing and quantifying biocultural diversity and identify their limitations. Finally, we discuss follow-up research questions to better understand the underlying mechanisms that control the coupling and decoupling of biological and cultural diversity in oases.


Assuntos
Biodiversidade , Diversidade Cultural , Animais , África do Norte , Argélia , Idioma
2.
Commun Biol ; 6(1): 690, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402788

RESUMO

Competitive hierarchies in diverse ecological communities have long been thought to lead to instability and prevent coexistence. However, system stability has never been tested, and the relation between hierarchy and instability has never been explained in complex competition networks parameterised with data from direct observation. Here we test model stability of 30 multispecies bryozoan assemblages, using estimates of energy loss from observed interference competition to parameterise both the inter- and intraspecific interactions in the competition networks. We find that all competition networks are unstable. However, instability is mitigated considerably by asymmetries in the energy loss rates brought about by hierarchies of strong and weak competitors. This asymmetric organisation results in asymmetries in the interaction strengths, which reduces instability by keeping the weight of short (positive) and longer (positive and negative) feedback loops low. Our results support the idea that interference competition leads to instability and exclusion but demonstrate that this is not because of, but despite, competitive hierarchy.


Assuntos
Ecossistema , Retroalimentação
3.
Environ Sci Pollut Res Int ; 30(21): 59813-59825, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37016250

RESUMO

A major source of anthropogenic polycyclic aromatic hydrocarbon (PAH) inputs into marine environments are diffuse emissions which result in low PAH concentrations in the ocean water, posing a potential threat for the affected ecosystems. However, the remediation of low-dosage PAH contaminations through microbial processes remains largely unknown. Here, we developed a process-based numerical model to simulate batch cultures receiving repeated low-dosage naphthalene pulses compared to the conventionally used one-time high-dosage. Pulsing frequency as well as dosage concentration had a large impact on the degradation efficiency. After 10 days, 99.7%, 97.2%, 86.6%, or 83.5% of the 145 mg L-1 naphthalene was degraded when given as a one-time high-dosage or in 2, 5, or 10 repeated low-concentration dosages equally spaced throughout the experiment, respectively. If the simulation was altered, giving the system that received 10 pulses time to recover to 99.7%, pulsing patterns affected the degradation of naphthalene. When pulsing 10 days at once per day, naphthalene accumulated following each pulse and if the degradation was allowed to continue until the recovered state was reached, the incubation time was prolonged to 17 days with a generation time of 3.81 days. If a full recovery was conditional before the next pulse was added, the scenario elongated to 55 days and generation time increased to 14.15 days. This indicates that dissolution kinetics dominate biodegradation kinetics, and the biomass concentration of PAH-degrading bacteria alone is not a sufficient indicator for quantifying active biodegradation. Applying those findings to the environment, a one-time input of a high dosage is potentially degraded faster than repeated low-dosage PAH pollution and repeated low-dosage input could lead to PAH accumulation in vulnerable pristine environments. Further research on the overlooked field of chronic low-dosage PAH contamination is necessary.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Ecossistema , Naftalenos , Bactérias/metabolismo , Biodegradação Ambiental
4.
Sci Data ; 10(1): 16, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609615

RESUMO

Promoting a transition to low-carbon energy systems to mitigate climate change requires an optimization of renewable energy (RE) planning. However, curated data for the most promising RE technologies, hydro-, wind and solar power, are missing, which limits data-based decision-making support. Here, a spatially explicit database for existing and proposed renewable power plants is provided: The Renewable Power Plant database for Africa (RePP Africa) encompasses 1074 hydro-, 1128 solar, and 276 wind power plant records. For each power plant, geographic coordinates, country, construction status, and capacity (in megawatt) are reported. The number of RePP Africa records exceeds the respective values in other existing open-access databases and matches available cumulative capacity data reported by international energy organizations best with deviations <13% for hydro-, <23% for wind, and <32% for solar power plants. This contemporary database is the most harmonized open-accessible reference source on RE power plants across Africa for stakeholders from science, (non-)governmental organizations, consulting, and industry; providing a fundamental data basis for the development of an integrated sustainable RE mix.

5.
Landslides ; 20(3): 511-529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36530578

RESUMO

This study aims at providing an overview of the socioeconomic consequences that debris-flow events have caused in Brazil, positioning the country in the international scenario and identifying areas where targeted actions are necessary. The analysis is conducted by calculating the debris-flow mortality rate (MR) and by using the so-called F-N plots (frequency of events that have caused N or more fatalities vs. the number of fatalities), based on a compilation of debris-flow-related disasters from 1920 to 2021. In total, 45 debris-flow events were documented in the considered period, responsible for 5771 fatalities and more than 5.5 billion USD in economic losses. The Serra do Mar Mountain Range is the main site of reported debris-flow occurrences (64.5%), followed by Serra da Mantiqueira (13.3%), and Serra Geral (13.3%). Southeast Brazil (SEB) is the region most affected by debris-flow events, due to the highest population density and the development of several cities in hilly areas, such as Petrópolis (Rio de Janeiro state) and Cubatão (São Paulo state). The debris-flow MR of SEB is higher than any other region in Brazil, pushing the national debris-flow MR upwards, and the F-N curve of SEB consolidates the region as the one with the highest risk to the phenomenon, indicating a higher probability of fatal events. The F-N plots further show that debris-flow events in Brazil represent a higher societal risk than in countries such as China, Japan and Italy. While there are differences in country size and the scale effect should be considered, these results highlight the urgent need for investments in disaster prevention and preparedness programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s10346-022-01984-7.

6.
Environ Microbiol ; 24(12): 5721-5733, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094736

RESUMO

Antibiotics are essential for modern medicine, they are employed frequently in hospitals and, therefore, present in hospital wastewater. Even in concentrations, that are lower than the minimum inhibitory concentrations (MICs) of susceptible bacteria, antibiotics may exert an influence and select resistant bacteria, if they exceed the MSCs (minimal selective concentrations) of resistant strains. Here, we compare the MSCs of fluorescently labelled Acinetobacter baylyi strains harboring spontaneous resistance mutations or a resistance plasmid with antibiotic concentrations determined in hospital wastewater. Low MSCs in the µg/L range were measured for the quinolone ciprofloxacin (17 µg/L) and for the carbapenem meropenem (30 µg/L). A 24 h continuous analysis of hospital wastewater showed daily fluctuations of the concentrations of these antibiotics with distinctive peaks at 7-8 p.m. and 5-6 a.m. The meropenem concentrations were always above the MSC and MIC values of A. baylyi. In addition, the ciprofloxacin concentrations were in the range of the lowest MSC for about half the time. These results explain the abundance of strains with meropenem and ciprofloxacin resistance in hospital wastewater and drains.


Assuntos
Antibacterianos , Águas Residuárias , Antibacterianos/farmacologia , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Ciprofloxacina/farmacologia , Hospitais
7.
Environ Sci Technol ; 56(20): 14397-14408, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36170232

RESUMO

The presence of anthropogenic organic micropollutants in rivers poses a long-term threat to surface water quality. To describe and quantify the in-stream fate of single micropollutants, the advection-dispersion-reaction (ADR) equation has been used previously. Understanding the dynamics of the mixture effects and cytotoxicity that are cumulatively caused by micropollutant mixtures along their flow path in rivers requires a new concept. Thus, we extended the ADR equation from single micropollutants to defined mixtures and then to the measured mixture effects of micropollutants extracted from the same river water samples. Effects (single and mixture) are expressed as effect units and toxic units, the inverse of effect concentrations and inhibitory concentrations, respectively, quantified using a panel of in vitro bioassays. We performed a Lagrangian sampling campaign under unsteady flow, collecting river water that was impacted by a wastewater treatment plant (WWTP) effluent. To reduce the computational time, the solution of the ADR equation was expressed by a convolution-based reactive transport approach, which was used to simulate the dynamics of the effects. The dissipation dynamics of the individual micropollutants were reproduced by the deterministic model following first-order kinetics. The dynamics of experimental mixture effects without known compositions were captured by the model ensemble obtained through Bayesian calibration. The highly fluctuating WWTP effluent discharge dominated the temporal patterns of the effect fluxes in the river. Minor inputs likely from surface runoff and pesticide diffusion might contribute to the general effect and cytotoxicity pattern but could not be confirmed by the model-based analysis of the available effect and chemical data.


Assuntos
Praguicidas , Poluentes Químicos da Água , Teorema de Bayes , Monitoramento Ambiental , Praguicidas/análise , Rios/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
FEMS Microbiol Ecol ; 98(7)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35749563

RESUMO

Glacial melt-down alters hydrological and physico-chemical conditions in downstream aquatic habitats. In this study, we tested if sediment-associated microbial communities respond to the decrease of glaciers and associated meltwater flows in high-alpine lakes. We analyzed 16 lakes in forefield catchments of three glaciers in the Eastern Swiss Alps on physico-chemical and biological parameters. We compared lakes fed by glacier meltwater with hydrologically disconnected lakes, as well as "mixed" lakes that received water from both other lake types. Glacier-fed lakes had a higher turbidity (94 NTU) and conductivity (47 µS/cm), but were up to 5.2°C colder than disconnected lakes (1.5 NTU, 26 µS/cm). Nutrient concentration was low in all lakes (TN < 0.05 mg/l, TP < 0.02 mg/l). Bacterial diversity in the sediments decreased significantly with altitude. Bacterial community composition correlated with turbidity, temperature, conductivity, nitrate, and lake age and was distinctly different between glacier-fed compared to disconnected and mixed water lakes, but not between catchments. Chemoheterotrophic processes were more abundant in glacier-fed compared to disconnected and mixed water lakes where photoautotrophic processes dominated. Our study suggests that the loss of glaciers will change sediment bacterial community composition and physiology that are unique for glacier-fed lakes in mountain and polar regions.


Assuntos
Camada de Gelo , Microbiota , Bactérias/genética , Camada de Gelo/microbiologia , Lagos , Água
9.
ACS Environ Au ; 2(6): 536-548, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37101725

RESUMO

Long-term accumulation in the soils of ubiquitous organic pollutants such as many polycyclic aromatic hydrocarbons (PAHs) depends on deposition from the atmosphere, revolatilization, leaching, and degradation processes such as photolysis and biodegradation. Quantifying the phase distribution and fluxes of these compounds across environmental compartments is thus crucial to understand the long-term contaminant fate. The gas-phase exchange between soil and atmosphere follows chemical fugacity gradients that can be approximated by gas-phase concentrations, yet which are difficult to measure directly. Thus, passive sampling, measured sorption isotherms, or empirical relationships to estimate sorption distribution have been combined in this study to determine aqueous (or gas) phase concentrations from measured bulk concentrations in soil solids. All these methods have their strengths and weaknesses but agree within 1 order of magnitude except for ex situ passive samplers employed in soil slurries, which estimated much lower concentrations in soil water and gas likely due to experimental artifacts. In field measurements, PAH concentrations determined in the atmosphere show a pronounced seasonality with some revolatilization during summer and gaseous deposition during winter, but overall dry deposition dominates annual mean fluxes. The characteristic patterns of PAHs in the different phases (gas phase, atmospheric passive samplers, bulk deposition, and soil solids) confirm the expected compound-specific distribution pattern and behavior. Since revolatilization fluxes in summer are only minor and wet and dry deposition is ongoing, our results clearly show that the PAH loads in topsoils will continue to increase.

10.
Environ Sci Technol ; 55(8): 5106-5116, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33759504

RESUMO

Suspended particulate matter (SPM) plays an important role in the fate of organic micropollutants in rivers during rain events, when sediments are remobilized and turbid runoff components enter the rivers. Under baseflow conditions, the SPM concentration is low and the contribution of SPM-bound contaminants to the overall risk of organic contaminants in rivers is assumed to be negligible. To challenge this assumption, we explored if SPM may act as a source or sink for all or specific groups of organic chemicals in a small river. The concentrations of over 600 contaminants and the mixture effects stemming from all chemicals in in vitro bioassays were measured for river water, SPM, and the surface sediment after solid-phase extraction or exhaustive solvent extraction. The bioavailable fractions of chemicals and mixture effects were estimated after passive equilibrium sampling of enriched SPM slurries and sediments in the lab. Dissolved compounds dominated the total chemical burden in the water column (water plus SPM) of the river, whereas SPM-bound chemicals contributed up to 46% of the effect burden even if the SPM concentration in rivers was merely 1 mg/L. The equilibrium between water and SPM was still not reached under low-flow conditions with SPM as a source of water contamination. The ratios of SPM-associated to sediment-associated neutral and hydrophobic chemicals as well as the ratios of the mixture effects expressed as bioanalytical equivalent concentrations were close to 1, suggesting that the surface sediment can be used as a proxy for SPM under baseflow conditions when the sampling of a large amount of water to obtain sufficient SPM cannot be realized.


Assuntos
Rios , Poluentes Químicos da Água , China , Monitoramento Ambiental , Água Doce , Sedimentos Geológicos , Material Particulado/análise , Poluentes Químicos da Água/análise
11.
Conserv Biol ; 35(2): 643-653, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32671869

RESUMO

Megafauna species are intrinsically vulnerable to human impact. Freshwater megafauna (i.e., freshwater animals ≥30 kg, including fishes, mammals, reptiles, and amphibians) are subject to intensive and increasing threats. Thirty-four species are listed as critically endangered on the International Union for Conservation of Nature (IUCN). Red List of Threatened Species, the assessments for which are an important basis for conservation actions but remain incomplete for 49 (24%) freshwater megafauna species. Consequently, the window of opportunity for protecting these species could be missed. Identifying the factors that predispose freshwater megafauna to extinction can help predict their extinction risk and facilitate more effective and proactive conservation actions. Thus, we collated 8 life-history traits for 206 freshwater megafauna species. We used generalized linear mixed models to examine the relationships between extinction risk based on the IUCN Red List categories and the combined effect of multiple traits, as well as the effect of human impact on these relationships for 157 classified species. The most parsimonious model included human impact and traits related to species' recovery potential including life span, age at maturity, and fecundity. Applying the most parsimonious model to 49 unclassified species predicted that 17 of them are threatened. Accounting for model predictions together with IUCN Red List assessments, 50% of all freshwater megafauna species are considered threatened. The Amazon and Yangtze basins emerged as global diversity hotspots of threatened freshwater megafauna, in addition to existing hotspots, including the Ganges-Brahmaputra and Mekong basins and the Caspian Sea region. Assessment and monitoring of those species predicted to be threatened are needed, especially in the Amazon and Yangtze basins. Investigation of life-history traits and trends in population and distribution, regulation of overexploitation, maintaining river connectivity, implementing protected areas focusing on freshwater ecosystems, and integrated basin management are required to protect threatened freshwater megafauna in diversity hotspots.


Efectos Combinados de los Rasgos de la Historia de Vida y el Impacto Humano sobre el Riesgo de Extinción de la Megafauna de Agua Dulce Resumen Las especies de megafauna son intrínsecamente vulnerables al impacto humano. La megafauna de agua dulce (es decir, los animales ≥30 kg, incluyendo peces, mamíferos, reptiles y anfibios) está sujeta a amenazas intensivas y en aumento. La Lista Roja de la UICN (Unión Internacional para la Conservación de la Naturaleza) lista a 34 especies en peligro crítico de extinción. Las evaluaciones para esta lista son un cimiento importante para las acciones de conservación, pero permanecen incompletas para 49 (24%) de las especies de megafauna de agua dulce. Como consecuencia, la ventana de oportunidad para la protección de estas especies podría perderse. La identificación de los factores que predisponen a la megafauna de agua dulce a la extinción puede ayudar a predecir el riesgo de extinción para cada especie y facilitar acciones de conservación más efectivas y proactivas. Por lo anterior, recopilamos ocho rasgos de historia de vida para 206 especies de megafauna de agua dulce. Usamos modelos lineales generalizados mixtos para examinar las relaciones entre el riesgo de extinción medido con base en las categorías de la Lista Roja de la UICN y el efecto combinado de diferentes rasgos, así como el efecto del impacto humano sobre estas relaciones para 157 especies clasificadas. El modelo más parsimonioso incluyó al impacto humano y a los rasgos relacionados con el potencial de recuperación de las especies como el ciclo de vida, edad de madurez y fecundidad. La aplicación de este modelo a las 49 especies sin clasificación pronosticó que 17 de ellas están amenazadas. Si consideramos las predicciones del modelo junto con las evaluaciones de la Lista Roja de la UICN, el 50% de todas las especies de megafauna de agua dulce están consideradas como amenazadas. Las cuencas del Amazonas y del Yangtze surgieron como puntos calientes de diversidad mundial, junto con las cuencas del Ganges-Brahmaputra y el Mekong y la región del mar Caspio. Es urgente evaluar y monitorear a aquellas especies que se pronostica estén amenazadas, especialmente en las cuencas del Amazonas y del Yangtze. Se requieren investigaciones sobre los rasgos de la historia de vida y las tendencias poblacionales y de distribución, la regulación de la sobreexplotación, el mantenimiento de la conectividad entre ríos, la implementación de áreas protegidas enfocadas en los ecosistemas de agua dulce y un manejo integrado de cuencas para proteger a la megafauna de agua dulce en los puntos calientes de diversidad.


Assuntos
Ecossistema , Extinção Biológica , Animais , Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Água Doce , Humanos
12.
Nature ; 588(7838): 395-396, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328660
13.
Sci Total Environ ; 741: 139514, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887017

RESUMO

Organic micropollutants enter rivers mainly with discharges of wastewater treatment plants (WWTP) and pose a risk to aquatic ecosystems and water quality. A considerable knowledge gap exists for disentangling overlapping processes and driving conditions that control the fate of these pollutants. Thus, the aim of this study was to identify the driving parameters for attenuation of selected pharmaceuticals (carbamazepine, diclofenac, tramadol and venlafaxine) under field conditions. The presented study was performed at a small river (Ammer River, mean discharge 0.87 m3 s-1) which is hydrologically complex due to karstification, numerous artificial discharges, and engineered modifications of the channel. We applied a Lagrangian sampling scheme at two sequential river reaches. In general, for the investigated compounds and over the length of the tested reaches, the absolute net attenuation representative for 24 h was low (≤ 23% net attenuation), yet calculated half-lives were comparable to literature. Photodegradation is specifically relevant for the first river reach characterized by a higher net attenuation of the photosensitive compound diclofenac (14.5% ±11.3%) compared to the second section (9.8% ±13.7%). This is likely due to a spatial difference in canopy shading, which is supported by significant correlations (R2 ≥ 0.8) of the temporally changing 'temperature' and 'solar radiation' with time-specific degradation rate constants of photosensitive compounds for consecutive hourly water parcels. In general, the presented spatially and temporally resolved approach is a suitable tool to determine the attenuation of organic micropollutants and to narrow down the interpretation of net attenuation to a few reasonable processes.


Assuntos
Rios , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental , Águas Residuárias/análise
14.
Environ Toxicol Chem ; 39(12): 2552-2559, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32897547

RESUMO

Chemicals emitted into the environment are typically present at low concentrations but may act together in mixtures. Concentration-response curves of in vitro bioassays were often linear for effect levels <30%, and the predictions for concentration addition (CA) of similarly acting chemicals and for independent action (IA) of dissimilarly acting chemicals overlapped. We derived a joint CA/IA mixture model for the low-effect level portion of concentration-response curves. In a first case study, we evaluated the cytotoxicity of over 200 mixtures of up to 17 components that were mixed in concentration ratios as they occurred in river water. The predictions of the full IA model were indistinguishable from the predictions of the full CA model up to 10% effect, confirming the applicability of the joint CA/IA mixture model at low effect levels. In a second case study, we evaluated if environmental concentrations trigger effects at levels low enough for the joint CA/IA mixture model to apply. The detected concentrations were scaled by their toxic potencies to estimate the mixture effect of the detected chemicals in a complex mixture. In 86% of 156 samples the effects fell in the validity range of the joint CA/IA mixture model (<10% effect level), confirming the CA assumption for toxic unit summation. The joint CA/IA mixture model is not suitable for testing specific mixture hypotheses and interactions of chemicals in mixtures, where more refined models are required; but it is helpful for the interpretation of effects of complex (multicomponent) environmental mixtures, especially for water samples with relatively low effect level. Environ Toxicol Chem 2020;39:2552-2559. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Modelos Lineares , Animais , Morte Celular , Daphnia/fisiologia , Peixes/fisiologia , Água Doce , Medição de Risco , Testes de Toxicidade Aguda
15.
Environ Toxicol Chem ; 39(7): 1382-1391, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32347587

RESUMO

Organic micropollutants of anthropogenic origin in river waters may impair aquatic ecosystem health and drinking water quality. To evaluate micropollutant fate and turnover on a catchment scale, information on input source characteristics as well as spatial and temporal variability is required. The influence of tributaries from agricultural and urban areas and the input of wastewater were investigated by grab and Lagrangian sampling under base flow conditions within a 7.7-km-long stretch of the Ammer River (southwest Germany) using target screening for 83 organic micropollutants and 4 in vitro bioassays with environmentally relevant modes of action. In total, 9 pesticides and transformation products, 13 pharmaceuticals, and 6 industrial and household chemicals were detected. Further, aryl hydrocarbon receptor induction, peroxisome proliferator-activated receptor activity, estrogenicity, and oxidative stress response were measured in the river. The vast majority of the compounds and mixture effects were introduced by the effluent of a wastewater-treatment plant, which contributed 50% of the total flow rate of the river on the sampling day. The tributaries contributed little to the overall load of organic micropollutants and mixture effects because of their relatively low discharge but showed a different chemical and toxicological pattern from the Ammer River, though a comparison to effect-based trigger values pointed toward unacceptable surface water quality in the main stem and in some of the tributaries. Chemical analysis and in vitro bioassays covered different windows of analyte properties but reflected the same picture. Environ Toxicol Chem 2020;39:1382-1391. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água/análise , Ecossistema , Água Doce/análise , Alemanha , Praguicidas/análise , Fatores de Tempo , Testes de Toxicidade , Águas Residuárias/química , Purificação da Água , Qualidade da Água
16.
Proc Biol Sci ; 287(1922): 20192643, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32126954

RESUMO

Concern for megafauna is increasing among scientists and non-scientists. Many studies have emphasized that megafauna play prominent ecological roles and provide important ecosystem services to humanity. But, what precisely are 'megafauna'? Here, we critically assess the concept of megafauna and propose a goal-oriented framework for megafaunal research. First, we review definitions of megafauna and analyse associated terminology in the scientific literature. Second, we conduct a survey among ecologists and palaeontologists to assess the species traits used to identify and define megafauna. Our review indicates that definitions are highly dependent on the study ecosystem and research question, and primarily rely on ad hoc size-related criteria. Our survey suggests that body size is crucial, but not necessarily sufficient, for addressing the different applications of the term megafauna. Thus, after discussing the pros and cons of existing definitions, we propose an additional approach by defining two function-oriented megafaunal concepts: 'keystone megafauna' and 'functional megafauna', with its variant 'apex megafauna'. Assessing megafauna from a functional perspective could challenge the perception that there may not be a unifying definition of megafauna that can be applied to all eco-evolutionary narratives. In addition, using functional definitions of megafauna could be especially conducive to cross-disciplinary understanding and cooperation, improvement of conservation policy and practice, and strengthening of public perception. As megafaunal research advances, we encourage scientists to unambiguously define how they use the term 'megafauna' and to present the logic underpinning their definition.


Assuntos
Conservação dos Recursos Naturais , Animais , Evolução Biológica , Tamanho Corporal , Extinção Biológica
17.
Proc Natl Acad Sci U S A ; 117(7): 3648-3655, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015125

RESUMO

Dams contribute to water security, energy supply, and flood protection but also fragment habitats of freshwater species. Yet, a global species-level assessment of dam-induced fragmentation is lacking. Here, we assessed the degree of fragmentation of the occurrence ranges of ∼10,000 lotic fish species worldwide due to ∼40,000 existing large dams and ∼3,700 additional future large hydropower dams. Per river basin, we quantified a connectivity index (CI) for each fish species by combining its occurrence range with a high-resolution hydrography and the locations of the dams. Ranges of nondiadromous fish species were more fragmented (less connected) (CI = 73 ± 28%; mean ± SD) than ranges of diadromous species (CI = 86 ± 19%). Current levels of fragmentation were highest in the United States, Europe, South Africa, India, and China. Increases in fragmentation due to future dams were especially high in the tropics, with declines in CI of ∼20 to 40 percentage points on average across the species in the Amazon, Niger, Congo, Salween, and Mekong basins. Our assessment can guide river management at multiple scales and in various domains, including strategic hydropower planning, identification of species and basins at risk, and prioritization of restoration measures, such as dam removal and construction of fish bypasses.


Assuntos
Biodiversidade , Peixes/classificação , Migração Animal , Animais , Conservação dos Recursos Naturais , Ecossistema , Peixes/fisiologia , Geografia , Rios/química
18.
Environ Toxicol Chem ; 39(2): 269-286, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31569266

RESUMO

Ionizable organic chemicals (IOCs) such as organic acids and bases are an important substance class requiring aquatic hazard evaluation. Although the aquatic toxicity of IOCs is highly dependent on the water pH, many toxicity studies in the literature cannot be interpreted because pH was not reported or not kept constant during the experiment, calling for an adaptation and improvement of testing guidelines. The modulating influence of pH on toxicity is mainly caused by pH-dependent uptake and bioaccumulation of IOCs, which can be described by ion-trapping and toxicokinetic models. The internal effect concentrations of IOCs were found to be independent of the external pH because of organisms' and cells' ability to maintain a stable internal pH milieu. If the external pH is close to the internal pH, existing quantitative structure-activity relationships (QSARs) for neutral organics can be adapted by substituting the octanol-water partition coefficient by the ionization-corrected liposome-water distribution ratio as the hydrophobicity descriptor, demonstrated by modification of the target lipid model. Charged, zwitterionic and neutral species of an IOC can all contribute to observed toxicity, either through concentration-additive mixture effects or by interaction of different species, as is the case for uncoupling of mitochondrial respiration. For specifically acting IOCs, we recommend a 2-step screening procedure with ion-trapping/QSAR models used to predict the baseline toxicity, followed by adjustment using the toxic ratio derived from in vitro systems. Receptor- or plasma-binding models also show promise for elucidating IOC toxicity. The present review is intended to help demystify the ecotoxicity of IOCs and provide recommendations for their hazard and risk assessment. Environ Toxicol Chem 2020;39:269-286. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Ecotoxicologia/métodos , Substâncias Perigosas/toxicidade , Modelos Teóricos , Compostos Orgânicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Substâncias Perigosas/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Compostos Orgânicos/química , Relação Quantitativa Estrutura-Atividade , Água/química , Poluentes Químicos da Água/química
19.
Sci Rep ; 9(1): 18531, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811208

RESUMO

Dam construction comes with severe social, economic and ecological impacts. From an ecological point of view, habitat types are altered and biodiversity is lost. Thus, to identify areas that deserve major attention for conservation, existing and planned locations for (hydropower) dams were overlapped, at global extent, with the contemporary distribution of freshwater megafauna species with consideration of their respective threat status. Hydropower development will disproportionately impact areas of high freshwater megafauna richness in South America, South and East Asia, and the Balkan region. Sub-catchments with a high share of threatened species are considered to be most vulnerable; these are located in Central America, Southeast Asia and in the regions of the Black and Caspian Sea. Based on this approach, planned dam locations are classified according to their potential impact on freshwater megafauna species at different spatial scales, attention to potential conflicts between climate mitigation and biodiversity conservation are highlighted, and priorities for freshwater management are recommended.

20.
Environ Sci Pollut Res Int ; 26(28): 28633-28649, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31385254

RESUMO

Organic micropollutants in rivers are emitted via diffuse and point sources like from agricultural practice or wastewater treatment plants (WWTP). Extensive laboratory and field experiments have been conducted to understand emissions and fate of these pollutants in freshwaters. Nevertheless, data is often difficult to compare since common protocols for appropriate approaches are largely missing. Thus, interpretation of the observed changes in substance concentrations and of the underlying fate of these compounds downstream of the chemical input into the river is still challenging. To narrow this research gap, (1) process understanding and (2) measurement approaches for field-based investigations are critically reviewed in this article. The review includes, on the one hand, processes that change the volume of the water (hydrological processes) and, on the other hand, processes that affect the substance mass within the water (distribution and transformation). Environmental boundary conditions for the purpose of better comparability of different attenuation studies, as well as promising state-of-the-art measurement approaches from different disciplines, are presented. This overview helps to develop a tailored procedure to assess turnover mechanisms of organic micropollutants under field conditions. In this respect, further research needs to standardize interdisciplinary approaches to increase the informative value of collected data.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Agricultura , Água Doce , Hidrologia , Rios/química , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...