Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450838

RESUMO

A novel wideband high-power single-pole two-throw (SP2T) switch based on gap waveguide technology is presented in this article. The proposed switch has a SP2T structure and consists of three standard WR62 waveguide ports. Due to the advantage of gap waveguide technology, the switch design structure requires no electrical contact between its different parts, and the leakage of the electromagnetic wave is suppressed. The proposed switch has an air gap between its parts. As a result, the sliding part of the switch can be moved freely to change the switch states. Consequently, a low-precision and low-cost fabrication can be utilized. The simulation and measurement of the proposed switch indicate that a 50% operating frequency bandwidth covering the range of 12-20 GHz can be achieved. The switch input return-loss is better than 15 dB within the frequency bandwidth, whereas the insertion loss and isolation levels of the proposed design are above 0.15 dB and better than 65 dB, respectively.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 053203, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25493896

RESUMO

This study presents an analytical approach for the electromagnetic characterization of one-dimensional inhomogeneous media. The proposed approach provides the permittivity profile of the medium in terms of the reflection and transmission coefficients. The inverse solution of the permittivity profile is obtained with the help of the state-transition matrix (STM) and its properties, which are presented and proved. The advantage of using this analytic reconstruction technique is its ability to remove complexity and nonlinearity of the inverse problem. Several examples have been considered for validation of the proposed technique and, in each case, quite good agreement has been found between the original and reconstructed profiles. It has been established from the obtained results that when the scattering parameters are combined with the properties of STM, a robust and reliable technique is provided for the electromagnetic characterization of one-dimensional inhomogeneous media.

3.
Artigo em Inglês | MEDLINE | ID: mdl-24032959

RESUMO

This paper deals with the introduction of an approach for the electromagnetic characterization of homogeneous chiral layers. The proposed method is based on the state-space approach and properties of a 4×4 state transition matrix. Based on this, first, the forward problem analysis through the state-space method is reviewed and properties of the state transition matrix of a chiral layer are presented and proved as two theorems. The formulation of a proposed electromagnetic characterization method is then presented. In this method, scattering data for a linearly polarized plane wave incident normally on a homogeneous chiral slab are combined with properties of a state transition matrix and provide a powerful characterization method. The main difference with respect to other well-established retrieval procedures based on the use of the scattering parameters relies on the direct computation of the transfer matrix of the slab as opposed to the conventional calculation of the propagation constant and impedance of the modes supported by the medium. The proposed approach allows avoiding nonlinearity of the problem but requires getting enough equations to fulfill the task which was provided by considering some properties of the state transition matrix. To demonstrate the applicability and validity of the method, the constitutive parameters of two well-known dispersive chiral metamaterial structures at microwave frequencies are retrieved. The results show that the proposed method is robust and reliable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...