Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 17(15): 4180-4190, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881039

RESUMO

Tubular structures in nature have the ability to respond to their environment-for example, blood vessels can constrict or dilate, thereby regulating flow velocity and blood pressure. These tubes have multiple concentric layers, with each layer having a distinct composition and properties. Inspired by such natural structures, we have synthesized responsive multilayer tubes in the laboratory without resorting to complex equipment such as a 3-D printer. Each layer of our tubes is a polymer gel formed by free-radical polymerization of water-soluble monomers. We can precisely control the inner diameter of the tube, the number of layers in the tube wall, and the thickness and chemistry of each layer. Tubes synthesized in this manner are robust, flexible, and stretchable. Moreover, our technique allows us to incorporate stimuli-responsive polymers into distinct regions of these tubes, and the resulting tubes can change their shape in response to external stimuli such as pH or temperature. In the case of laterally patterned tubes, the tube can be made to constrict or dilate over a particular segment-a behavior that is reminiscent of blood vessels. In the case of longitudinally patterned tubes, a straight tube can be induced to systematically curl into a coil. The versatility of our technique is further shown by constructing complex tubular architectures, including branched networks. On the whole, the polymeric tubes shown in this paper exhibit remarkable properties that cannot be realized by other techniques. Such tubes could find utility in biomedical engineering to construct anatomically realistic mimics of various tissues.


Assuntos
Polímeros , Água , Polimerização
2.
Langmuir ; 36(26): 7268-7276, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32543183

RESUMO

Hydrogels of biopolymers such as agar and gelatin are widely used in many applications, and in many cases, the gels are loaded with nanoparticles. The polymer chains in these gels are cross-linked by physical bonds into three-dimensional networks, with the mesh size of these networks typically being 10-100 nm. One class of "soft" nanoparticles are liposomes, which have an aqueous core surrounded by a lipid bilayer. Solutes encapsulated in the liposomal core can be delivered externally over time. In this paper, we create liposomes with diameters ∼150 nm from an unsaturated phospholipid (lecithin) and embed them in agar gels (the aqueous phase also contains 0-50% of glycerol, which is an active ingredient in cosmetic products). Upon placing this gel in quiescent water, we find that the liposomes release out of the gel into the water over a period of 1-3 days, even though the gel remains intact. This is a surprising result that runs contrary to our expectation that the liposomes would simply remain immobilized in the gel. We show that the release rate of liposomes can be tuned by several variables: for example, the release rate increases as the agar concentration is lowered and the rate increases steadily with temperature. In addition to agar, release of liposomes also occurs out of other physical gels including those of agarose and gelatin. However, liposomes made from a saturated phospholipid do not release out of any gels. We discuss a possible mechanism for liposomal release, which involves intact liposomes deforming and squeezing through transient large pores that arise in physical networks such as agar. Our findings have relevance to transdermal delivery: they suggest the possibility of systematically delivering liposomes loaded with actives out of an intact matrix.


Assuntos
Hidrogéis , Lipossomos , Biopolímeros , Gelatina , Géis , Fosfatidilcolinas
3.
ACS Appl Mater Interfaces ; 10(40): 34664-34673, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30265507

RESUMO

Many biological materials, such as the squid beak and the spinal disc, have a combination of stiff and soft parts with very different mechanical properties, for example, the elastic modulus (stiffness) of the stiffest part of the squid beak is about 100 times that of the softest part. Researchers have attempted to mimic such structures using hydrogels but have not succeeded in synthesizing bulk gels with such large variations in moduli. Here, we present a general approach that can be used to form hydrogels with two or more zones having appreciably different mechanical characters. For this purpose, we use a technique developed in our lab for creating hybrid hydrogels with distinct zones. For the soft zone of the gel, we form a polymer network using a conventional acrylic monomer [ N, N'-dimethylacrylamide (DMAA)] and with laponite (LAP) nanoparticles as the cross-linkers. For the stiff zone, we combine DMAA, LAP, and a methacrylated silica precursor ([3-(methacryloyloxy)-propyl]trimethoxy-silane). When this mixture is polymerized, nanoscale silica particles (∼300 nm in diameter) are formed, and these serve as additional cross-links between the polymer chains, making this network very stiff. The unique character of each zone is preserved in the hybrid gel, and different zones are covalently linked to each other, thereby ensuring robust interfaces. Rheological measurements show that the elastic modulus of the stiff zone can be more than 100 times that of the soft zone. This ratio of moduli is the highest reported to date in a single, continuous gel and is comparable to the ratio in the squid beak. We present different variations of our soft-stiff hybrid gels, including multizone cylinders and core-shell discs. Such soft-stiff gels could have utility in bioengineering, such as in interfacing stiff medical implants with soft tissues.

4.
Adv Mater ; 30(12): e1705651, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29380891

RESUMO

A highly porous 2D nanomaterial, holey graphene oxide (hGO), is synthesized directly from holey graphene powder and employed to create an aqueous 3D printable ink without the use of additives or binders. Stable dispersions of hydrophilic hGO sheets in water (≈100 mg mL-1 ) can be readily achieved. The shear-thinning behavior of the aqueous hGO ink enables extrusion-based printing of fine filaments into complex 3D architectures, such as stacked mesh structures, on arbitrary substrates. The freestanding 3D printed hGO meshes exhibit trimodal porosity: nanoscale (4-25 nm through-holes on hGO sheets), microscale (tens of micrometer-sized pores introduced by lyophilization), and macroscale (<500 µm square pores of the mesh design), which are advantageous for high-performance energy storage devices that rely on interfacial reactions to promote full active-site utilization. To elucidate the benefit of (nano)porosity and structurally conscious designs, the additive-free architectures are demonstrated as the first 3D printed lithium-oxygen (Li-O2 ) cathodes and characterized alongside 3D printed GO-based materials without nanoporosity as well as nanoporous 2D vacuum filtrated films. The results indicate the synergistic effect between 2D nanomaterials, hierarchical porosity, and overall structural design, as well as the promise of a freeform generation of high-energy-density battery systems.

5.
Nat Commun ; 8(1): 193, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28779112

RESUMO

Diverse structures in nature, such as the spinal disc and the onion have many concentric layers, and are created starting from the core and proceeding outwards. Here, we demonstrate an inside-out technique for creating multilayered polymer capsules. First, an initiator-loaded gel core is placed in a solution of monomer 1. The initiator diffuses outward and induces polymerization, leading to a shell of polymer 1. Thereafter, the core-shell structure is loaded with fresh initiator and placed in monomer 2, which causes a concentric shell of polymer 2 to form around the first shell. This process can be repeated to form multiple layers, each of a distinct polymer, and of controlled layer thickness. We show that these multilayered capsules can exhibit remarkable mechanical resilience as well as stimuli-responsive properties. The release of solutes from these capsules can be tailored to follow specific profiles depending on the chemistry and order of adjacent layers.Multiple concentric layers are present in a variety of structures present in nature, including the onion. Here, the authors show an inside-out strategy to synthesize multilayered polymer capsules, with different layers having specific composition and thereby specific responses to stimuli such as pH and temperature.

6.
ACS Appl Mater Interfaces ; 8(29): 19066-74, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27404225

RESUMO

External triggers such as pH or temperature can induce hydrogels to swell or shrink rapidly. Recently, these triggers have also been used to alter the three-dimensional (3-D) shapes of gels: for example, a flat gel sheet can be induced to fold into a tube. Self-folding gels are reminiscent of natural structures such as the Venus flytrap, which folds its leaves to entrap its prey. They are also of interest for applications in sensing or microrobotics. However, to advance the utility of self-folding gels, the range of triggers needs to be expanded beyond the conventional ones. Toward this end, we have designed a class of gels that change shape in response to very low concentrations of specific biomolecules. The gels are hybrids of three different constituents: (A) polyethylene glycol diacrylate (PEGDA); (B) gelatin methacrylate-co-polyethylene glycol dimethacrylate (GelMA-co-PEGDMA); and (C) N-isopropylacrylamide (NIPA). The thin-film hybrid is constructed as a bilayer or sandwich of two layers, with an A/B layer (alternating strips of A and B) sandwiched above a layer of gel C. Initially, when this hybrid gel is placed in water, the C layer is much more swollen than the A/B layer. Despite the swelling mismatch, the sheet remains flat because the A/B layer is very stiff. When collagenase enzyme is added to the water, it cleaves the gelatin chains in B, thus reducing the stiffness of the A/B layer. As a result, the swollen C layer is able to fold over the A/B layer, causing the sheet to transform into a specific shape. The typical transition is from flat sheet to closed hollow tube, and the time scale for this transition decreases with increasing enzyme concentration. Shape transitions are induced by enzyme levels as low as 0.75 U/mL. Interestingly, a shape transition is also induced by adding the lysate of murine fibroblast cells, which contains enzymes from the matrix metalloproteinase (MMP) family at levels around 0.1 U/mL (MMPs are similar to collagenase in their ability to cleave gelatin). We further show that transitions from flat sheets to other shapes such as helices and pancakes can be engineered by altering the design pattern of the gel. Additionally, we have made a rudimentary analog of the Venus flytrap, with two flat gels ("leaves") flanking a central folding gel ("hinge"). When enzyme is added, the hinge bends and brings the leaves together, trapping objects in the middle.


Assuntos
Hidrogéis/química , Animais , Droseraceae , Gelatina , Camundongos , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...