Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35888233

RESUMO

The development of a carbon lean steel production process following the concept of direct carbon avoidance is one of the most challenging tasks the iron and steel industry must tackle in just a few decades. The necessary drastic reduction of 80% of the process's inherent emissions by 2050 is only possible if a new process concept that uses hydrogen as the primary reductant is developed. The Hydrogen Plasma Smelting Reduction (HPSR) of ultra-fine iron ores is one of those promising concepts. The principle was already proven at a lab scale. The erection of a bench-scale facility followed this, and further scaled-ups are already planned for the upcoming years. For this scale-up, a better understanding of the fundamentals of the process is needed. In particular, knowledge of the kinetics of the process is essential for future economically feasible operations. This investigation shows the principles for evaluating and comparing the process kinetics under varying test setups by defining a representative kinetic parameter. Aside from the fundamentals for this definition, the conducted trials for the first evaluation are shown and explained. Several differences in the reduction behavior of the material at varying parameters of the process have already be shown. However, this investigation focuses on the description and definition of the method. An overall series of trials for detailed investigations will be conducted as a follow-up.

2.
Materials (Basel) ; 15(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744124

RESUMO

To meet the target for anthropogenic greenhouse gas (GHG) reduction, the European steel industry is obliged to reduce its emissions. A possible pathway to reach this requirement is through developments of new technologies for a GHG-free steel production. One of these processes is the hydrogen plasma smelting reduction (HPSR) developed since 1992 at the Chair of Ferrous Metallurgy at the Montanuniversitaet Leoben in Austria. Based on the already available publication of the methodology in this work, potential process parameters were investigated that influence the reduction kinetics during continuous charging to improve the process further. Preliminary tests with different charging rates and plasma gas compositions were carried out to investigate the impacts on the individual steps of the reduction process. In the main experiments, the obtained parameters were used to determine the effect of the pre-reduction degree on the kinetics and the hydrogen conversion. Finally, the preliminary and main trials were statistically evaluated using the program MODDE® 13 Pro to identify the significant influences on reduction time, oxygen removal rate, and hydrogen conversion. High hydrogen utilization degrees could be achieved with high iron ore feeding rates and low hydrogen concentrations in the plasma gas composition. The subsequent low reduction degree and thus a high proportion of oxide melt leads to a high oxygen removal rate in the post-reduction phase and, consequently, short process times. Calculations of the reduction constant showed an average value of 1.13 × 10-5 kg oxygen/m2 s Pa, which is seven times higher than the value given in literature.

3.
Materials (Basel) ; 12(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100817

RESUMO

The development of hydrogen plasma smelting reduction as a CO2 emission-free steel-making process is a promising approach. This study presents a concept of the reduction of haematite using hydrogen thermal plasma. A laboratory scale and pilot scale hydrogen plasma smelting reduction (HPSR) process are introduced. To assess the reduction behaviour of haematite, a series of experiments have been conducted and the main parameters of the reduction behaviour, namely the degree of hydrogen utilization, degree of reduction and the reduction rate are discussed. The thermodynamic aspect of the hematite reduction is considered, and the pertinent calculations were carried out using FactSageTM 7.2. The degree of hydrogen utilization and the degree of reduction were calculated using the off-gas chemical composition. The contribution of carbon, introduced from the graphite electrode, ignition pin and steel crucible, to the reduction reactions was studied. The degree of reduction of haematite, regarding H2O, CO and CO2 as the gaseous reduction products, was determined. It is shown that the degree of hydrogen utilization and the reduction rate were high at the beginning of the experiments, then decreased during the reduction process owing to the diminishing of iron oxide. Conducting experiments with the high basicity of slag B2 = 2 led to a decrease of the phosphorus concentration in the produced iron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA