Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(1): eaaw9253, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911940

RESUMO

Changes in extreme weather, such as tropical cyclones, are one of the most serious ways society experiences the impact of climate change. Advance forecasted conditional attribution statements, using a numerical model, were made about the anthropogenic climate change influence on an individual tropical cyclone, Hurricane Florence. Mean total overland rainfall amounts associated with the forecasted storm's core were increased by 4.9 ± 4.6% with local maximum amounts experiencing increases of 3.8 ± 5.7% due to climate change. A slight increase in the forecasted storm size of 1 to 2% was also attributed. This work reviews our forecasted attribution statement with the benefit of hindsight, demonstrating credibility of advance attribution statements for tropical cyclones.

2.
J Adv Model Earth Syst ; 11(6): 1543-1562, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31598187

RESUMO

Rimed hydrometeors (graupel or hail) are added to a stratiform cloud scheme for global models and tested in a variety of configurations. Off-line tests compare well to other cloud microphysics schemes with rimed ice used in mesoscale models. Tests in single column and climate mode show expected production of small amounts of rimed ice in the middle troposphere and at high latitudes. The overall climate impacts of rimed ice (hail or graupel) at 100-km horizontal grid spacing are small. There are some changes to partitioning between cloud ice and snow that affect upper troposphere water budgets and clouds. High-resolution simulations are conducted with a global but regionally refined grid at 14 km over the Contiguous United States. High-resolution simulations show local production of graupel with realistic size and number concentrations. The maximum graupel frequency at high resolution is over Western U.S. mountain ranges. Differences in total precipitation with the addition of rimed ice in 8-year simulations are statistically significant only for orographic precipitation over the Cascade and Rocky mountains, reducing model biases when rimed ice is included. Rimed ice slightly improves summer precipitation intensity relative to observations. Thus, while the global climate impact of rimed ice in stratiform clouds may be negligible, there are potentially important and systematic regional effects, particularly for orographic precipitation. Rimed ice in cumulus clouds is not yet treated but is an important next step.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA