Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Commun ; 14(1): 4232, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454110

RESUMO

Experiences have been shown to modulate behavior and physiology of future generations in some contexts, but there is limited evidence for inheritance of associative memory in different species. Here, we trained C. elegans nematodes to associate an attractive odorant with stressful starvation conditions and revealed that this associative memory was transmitted to the F1 progeny who showed odor-evoked avoidance behavior. Moreover, the F1 and the F2 descendants of trained animals exhibited odor-evoked cellular stress responses, manifested by the translocation of DAF-16/FOXO to cells' nuclei. Sperm, but not oocytes, transmitted these odor-evoked cellular stress responses which involved H3K9 and H3K36 methylations, the small RNA pathway machinery, and intact neuropeptide secretion. Activation of a single chemosensory neuron sufficed to induce a serotonin-mediated systemic stress response in both the parental trained generation and in its progeny. Moreover, inheritance of the cellular stress responses increased survival chances of the progeny as exposure to the training odorant allowed the animals to prepare in advance for an impending adversity. These findings suggest that in C. elegans associative memories and cellular changes may be transferred across generations.


Assuntos
Proteínas de Caenorhabditis elegans , Neuropeptídeos , Animais , Masculino , Caenorhabditis elegans/metabolismo , Sêmen/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuropeptídeos/metabolismo , Núcleo Celular/metabolismo
2.
Elife ; 122023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140557

RESUMO

A major goal in neuroscience is to elucidate the principles by which memories are stored in a neural network. Here, we have systematically studied how four types of associative memories (short- and long-term memories, each as positive and negative associations) are encoded within the compact neural network of Caenorhabditis elegans worms. Interestingly, sensory neurons were primarily involved in coding short-term, but not long-term, memories, and individual sensory neurons could be assigned to coding either the conditioned stimulus or the experience valence (or both). Moreover, when considering the collective activity of the sensory neurons, the specific training experiences could be decoded. Interneurons integrated the modulated sensory inputs and a simple linear combination model identified the experience-specific modulated communication routes. The widely distributed memory suggests that integrated network plasticity, rather than changes to individual neurons, underlies the fine behavioral plasticity. This comprehensive study reveals basic memory-coding principles and highlights the central roles of sensory neurons in memory formation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Interneurônios , Proteínas de Caenorhabditis elegans/fisiologia , Células Receptoras Sensoriais/fisiologia , Redes Neurais de Computação
3.
Proc Natl Acad Sci U S A ; 120(3): e2201699120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36630454

RESUMO

Neurons are characterized by elaborate tree-like dendritic structures that support local computations by integrating multiple inputs from upstream presynaptic neurons. It is less clear whether simple neurons, consisting of a few or even a single neurite, may perform local computations as well. To address this question, we focused on the compact neural network of Caenorhabditis elegans animals for which the full wiring diagram is available, including the coordinates of individual synapses. We find that the positions of the chemical synapses along the neurites are not randomly distributed nor can they be explained by anatomical constraints. Instead, synapses tend to form clusters, an organization that supports local compartmentalized computations. In mutually synapsing neurons, connections of opposite polarity cluster separately, suggesting that positive and negative feedback dynamics may be implemented in discrete compartmentalized regions along neurites. In triple-neuron circuits, the nonrandom synaptic organization may facilitate local functional roles, such as signal integration and coordinated activation of functionally related downstream neurons. These clustered synaptic topologies emerge as a guiding principle in the network, presumably to facilitate distinct parallel functions along a single neurite, which effectively increase the computational capacity of the neural network.


Assuntos
Caenorhabditis elegans , Neurônios , Animais , Caenorhabditis elegans/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Neuritos , Redes Neurais de Computação
4.
Mol Syst Biol ; 18(9): e10514, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36106925

RESUMO

Efficient navigation based on chemical cues is an essential feature shared by all animals. These cues may be encountered in complex spatiotemporal patterns and with orders of magnitude varying intensities. Nevertheless, sensory neurons accurately extract the relevant information from such perplexing signals. Here, we show how a single sensory neuron in Caenorhabditis elegans animals can cell-autonomously encode complex stimulus patterns composed of instantaneous sharp changes and of slowly changing continuous gradients. This encoding relies on a simple negative feedback in the G-protein-coupled receptor (GPCR) signaling pathway in which TAX-6/Calcineurin plays a key role in mediating the feedback inhibition. This negative feedback supports several important coding features that underlie an efficient navigation strategy, including exact adaptation and adaptation to the magnitude of the gradient's first derivative. A simple mathematical model explains the fine neural dynamics of both wild-type and tax-6 mutant animals, further highlighting how the calcium-dependent activity of TAX-6/Calcineurin dictates GPCR inhibition and response dynamics. As GPCRs are ubiquitously expressed in all sensory neurons, this mechanism may be a general solution for efficient cell-autonomous coding of external stimuli.


Assuntos
Calcineurina , Cálcio , Animais , Caenorhabditis elegans/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Retroalimentação , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriais/metabolismo
5.
Methods Mol Biol ; 2468: 205-214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320566

RESUMO

C. elegans offer a unique opportunity for understanding computation in neural networks. This is largely due to their relatively compact neural network for which a wiring diagram is available. Recent advances in genetic tools for interrogating neural activity (e.g., optogenetics) make C. elegans particularly compelling as they can be expressed in many different combinations in target individual neurons. Thus, the prospect to decipher principles underlying functionality in neural networks largely depends on the ease by which transgenic animals can be generated. Traditionally, to generate transgenic animals one would inject a plasmid containing the gene of interest under the regulation of the cell- or lineage-specific promoter. This often requires laborious cloning steps of both the gene and the promoter. The Hobert lab has developed a simpler protocol in which linear PCR fragments can be injected to generate transgenic animals. Relying on this PCR fusion-based method, here we provide a detailed protocol that we have optimized for expressing various genetically encoded calcium indicators and optogenetic tools in individual or sets of neurons. We use these simple procedures to generate multiple constructs within a very short time frame (typically 1-2 days).


Assuntos
Caenorhabditis elegans , Optogenética , Animais , Caenorhabditis elegans/genética , Fusão Gênica , Neurônios/fisiologia , Optogenética/métodos , Reação em Cadeia da Polimerase
6.
Proc Biol Sci ; 288(1946): 20210128, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33715430

RESUMO

Underwater divers are susceptible to neurological risks due to their exposure to increased pressure. Absorption of elevated partial pressure of inert gases such as helium and nitrogen may lead to nitrogen narcosis. Although the symptoms of nitrogen narcosis are known, the molecular mechanisms underlying these symptoms have not been elucidated. Here, we examined the behaviour of the soil nematode Caenorhabditis elegans under scuba diving conditions. We analysed wild-type animals and mutants in the dopamine pathway under hyperbaric conditions, using several gas compositions and under varying pressure levels. We found that the animals changed their speed on a flat bacterial surface in response to pressure in a biphasic mode that depended on dopamine. Dopamine-deficient cat-2 mutant animals did not exhibit a biphasic response in high pressure, while the extracellular accumulation of dopamine in dat-1 mutant animals mildly influenced this response. Our data demonstrate that in C. elegans, similarly to mammalian systems, dopamine signalling is involved in the response to high pressure. This study establishes C. elegans as a powerful system to elucidate the molecular mechanisms that underly nitrogen toxicity in response to high pressure.


Assuntos
Dopamina , Narcose por Gás Inerte , Animais , Caenorhabditis elegans/genética , Hélio , Nitrogênio , Pressão Parcial
7.
Nat Commun ; 11(1): 5452, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093477

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nat Commun ; 10(1): 4419, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31548599

RESUMO

We would like to make our readers aware of the publication by Cohen et al., which reports irrational behaviour in C. elegans olfactory preference[1] . These complementary studies establish C. elegans as a model system to explore the neural mechanisms of decision making.

9.
Nat Commun ; 10(1): 3202, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324786

RESUMO

C. elegans worms exhibit a natural chemotaxis towards food cues. This provides a potential platform to study the interactions between stimulus valence and innate behavioral preferences. Here we perform a comprehensive set of choice assays to measure worms' relative preference towards various attractants. Surprisingly, we find that when facing a combination of choices, worms' preferences do not always follow value-based hierarchy. In fact, the innate chemotaxis behavior in worms robustly violates key rationality paradigms of transitivity, independence of irrelevant alternatives and regularity. These violations arise due to asymmetric modulatory effects between the presented options. Functional analysis of the entire chemosensory system at a single-neuron resolution, coupled with analyses of mutants, defective in individual neurons, reveals that these asymmetric effects originate in specific sensory neurons.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Quimiotaxia/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Sinais (Psicologia) , Tomada de Decisões/fisiologia , Modelos Biológicos
10.
Curr Biol ; 29(10): 1573-1583.e4, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31056393

RESUMO

Organisms' capacity to anticipate future conditions is key for survival. Associative memories are instrumental for learning from past experiences, yet little is known about the processes that follow memory retrieval and their potential advantage in preparing for impending developments. Here, using C. elegans nematodes, we demonstrate that odor-evoked retrieval of aversive memories induces rapid and protective stress responses, which increase animal survival prospects when facing imminent adversities. The underlying mechanism relies on two sensory neurons: one is necessary during the learning period, and the other is necessary and sufficient for memory retrieval. Downstream of memory reactivation, serotonin secreted from two head neurons mediates the systemic stress response. Thus, evoking stressful memories, stored within individual sensory neurons, allows animals to anticipate upcoming dire conditions and provides a head start to initiate rapid and protective responses that ultimately increase animal fitness.


Assuntos
Caenorhabditis elegans/fisiologia , Memória , Odorantes , Células Receptoras Sensoriais/fisiologia , Adaptação Fisiológica , Animais
11.
Nat Commun ; 9(1): 2866, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030432

RESUMO

The ability of animals to effectively locate and navigate toward food sources is central for survival. Here, using C. elegans nematodes, we reveal the neural mechanism underlying efficient navigation in chemical gradients. This mechanism relies on the activity of two types of chemosensory neurons: one (AWA) coding gradients via stochastic pulsatile dynamics, and the second (AWCON) coding the gradients deterministically in a graded manner. The pulsatile dynamics of the AWA neuron adapts to the magnitude of the gradient derivative, allowing animals to take trajectories better oriented toward the target. The robust response of AWCON to negative derivatives promotes immediate turns, thus alleviating the costs incurred by erroneous turns dictated by the AWA neuron. This mechanism empowers an efficient navigation strategy that outperforms the classical biased-random walk strategy. This general mechanism thus may be applicable to other sensory modalities for efficient gradient-based navigation.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Quimiotaxia/fisiologia , Neurônios/fisiologia , Animais , Comportamento Animal , Simulação por Computador , Microfluídica , Movimento , Transdução de Sinais , Especificidade da Espécie
12.
Elife ; 72018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29412137

RESUMO

It is well established that inducible transcription is essential for the consolidation of salient experiences into long-term memory. However, whether inducible transcription relays information about the identity and affective attributes of the experience being encoded, has not been explored. To this end, we analyzed transcription induced by a variety of rewarding and aversive experiences, across multiple brain regions. Our results describe the existence of robust transcriptional signatures uniquely representing distinct experiences, enabling near-perfect decoding of recent experiences. Furthermore, experiences with shared attributes display commonalities in their transcriptional signatures, exemplified in the representation of valence, habituation and reinforcement. This study introduces the concept of a neural transcriptional code, which represents the encoding of experiences in the mouse brain. This code is comprised of distinct transcriptional signatures that correlate to attributes of the experiences that are being committed to long-term memory.


Assuntos
Encéfalo/fisiologia , Memória de Longo Prazo , Transcrição Gênica , Ativação Transcricional , Animais , Comportamento Animal , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real
13.
BMC Biol ; 15(1): 29, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28385158

RESUMO

BACKGROUND: Animals exhibit astonishingly complex behaviors. Studying the subtle features of these behaviors requires quantitative, high-throughput, and accurate systems that can cope with the often rich perplexing data. RESULTS: Here, we present a Multi-Animal Tracker (MAT) that provides a user-friendly, end-to-end solution for imaging, tracking, and analyzing complex behaviors of multiple animals simultaneously. At the core of the tracker is a machine learning algorithm that provides immense flexibility to image various animals (e.g., worms, flies, zebrafish, etc.) under different experimental setups and conditions. Focusing on C. elegans worms, we demonstrate the vast advantages of using this MAT in studying complex behaviors. Beginning with chemotaxis, we show that approximately 100 animals can be tracked simultaneously, providing rich behavioral data. Interestingly, we reveal that worms' directional changes are biased, rather than random - a strategy that significantly enhances chemotaxis performance. Next, we show that worms can integrate environmental information and that directional changes mediate the enhanced chemotaxis towards richer environments. Finally, offering high-throughput and accurate tracking, we show that the system is highly suitable for longitudinal studies of aging- and proteotoxicity-associated locomotion deficits, enabling large-scale drug and genetic screens. CONCLUSIONS: Together, our tracker provides a powerful and simple system to study complex behaviors in a quantitative, high-throughput, and accurate manner.


Assuntos
Comportamento Animal , Caenorhabditis elegans/fisiologia , Etologia/métodos , Envelhecimento/fisiologia , Algoritmos , Animais , Quimiotaxia , Aprendizado de Máquina , Degeneração Neural/patologia , Proteínas/toxicidade , Software , Fatores de Tempo , Gravação em Vídeo
14.
PLoS Comput Biol ; 12(9): e1005021, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27606684

RESUMO

A major goal of systems neuroscience is to decipher the structure-function relationship in neural networks. Here we study network functionality in light of the common-neighbor-rule (CNR) in which a pair of neurons is more likely to be connected the more common neighbors it shares. Focusing on the fully-mapped neural network of C. elegans worms, we establish that the CNR is an emerging property in this connectome. Moreover, sets of common neighbors form homogenous structures that appear in defined layers of the network. Simulations of signal propagation reveal their potential functional roles: signal amplification and short-term memory at the sensory/inter-neuron layer, and synchronized activity at the motoneuron layer supporting coordinated movement. A coarse-grained view of the neural network based on homogenous connected sets alone reveals a simple modular network architecture that is intuitive to understand. These findings provide a novel framework for analyzing larger, more complex, connectomes once these become available.


Assuntos
Caenorhabditis elegans/fisiologia , Conectoma , Modelos Neurológicos , Rede Nervosa/fisiologia , Animais , Biologia Computacional
15.
BMC Biol ; 14: 9, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26847342

RESUMO

BACKGROUND: Fast responses can provide a competitive advantage when resources are inhomogeneously distributed. The nematode Caenorhabditis elegans was shown to modulate locomotion on a lawn of bacterial food in serotonin (5-HT)-dependent manners. However, potential roles for serotonergic signaling in responding to food discovery are poorly understood. RESULTS: We found that 5-HT signaling in C. elegans facilitates efficient exploitation in complex environments by mediating a rapid response upon encountering food. Genetic or cellular manipulations leading to deficient serotonergic signaling resulted in gradual responses and defective exploitation of a patchy foraging landscape. Physiological imaging revealed that the NSM serotonergic neurons responded acutely upon encounter with newly discovered food and were key to rapid responses. In contrast, the onset of responses of ADF serotonergic neurons preceded the physical encounter with the food. The serotonin-gated chloride channel MOD-1 and the ortholog of mammalian 5-HT1 metabotropic serotonin receptors SER-4 acted in synergy to accelerate decision-making. The relevance of responding rapidly was demonstrated in patchy environments, where the absence of 5-HT signaling was detrimental to exploitation. CONCLUSIONS: Our results implicate 5-HT in a novel form of decision-making, demonstrate its fitness consequences, suggest that NSM and ADF act in concert to modulate locomotion in complex environments, and identify the synergistic action of a channel and a metabotropic receptor in accelerating C. elegans decision-making.


Assuntos
Comportamento Apetitivo , Caenorhabditis elegans/fisiologia , Serotonina/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Meio Ambiente , Locomoção , Transdução de Sinais
16.
Methods Mol Biol ; 1327: 39-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26423966

RESUMO

C. elegans offer a unique opportunity for understanding computation in neural networks. This is largely due to their relatively compact neural network for which a wiring diagram is available. Recent advances in genetic tools for interrogating neural activity (e.g., optogenetics) make C. elegans particularly compelling as they can be expressed in many different combinations in target individual neurons. Thus, the prospect to decipher principles underlying functionality in neural networks largely depends on the ease by which transgenic animals can be generated. Traditionally, to generate transgenic animals one would inject a plasmid containing the gene of interest under the regulation of the cell- or lineage-specific promoter. This often requires laborious cloning steps of both the gene and the promoter. The Hobert lab has developed a simpler protocol in which linear PCR fragments can be injected to generate transgenic animals. Relying on this PCR fusion-based method, here we provide a detailed protocol that we have optimized for expressing various genetically encoded calcium indicators and optogenetic tools in individual or sets of neurons. We use these simple procedures to generate multiple constructs within a very short time frame (typically 1-2 days).


Assuntos
Caenorhabditis elegans/genética , Expressão Gênica , Genes Reporter , Reação em Cadeia da Polimerase/métodos , Proteínas Recombinantes de Fusão/genética , Animais , Clonagem Molecular , Regiões Promotoras Genéticas
17.
Proc Natl Acad Sci U S A ; 112(4): 1185-9, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25583501

RESUMO

Animals with compact sensory systems face an encoding problem where a small number of sensory neurons are required to encode information about its surrounding complex environment. Using Caenorhabditis elegans worms as a model, we ask how chemical stimuli are encoded by a small and highly connected sensory system. We first generated a comprehensive library of transgenic worms where each animal expresses a genetically encoded calcium indicator in individual sensory neurons. This library includes the vast majority of the sensory system in C. elegans. Imaging from individual sensory neurons while subjecting the worms to various stimuli allowed us to compile a comprehensive functional map of the sensory system at single neuron resolution. The functional map reveals that despite the dense wiring, chemosensory neurons represent the environment using sparse codes. Moreover, although anatomically closely connected, chemo- and mechano-sensory neurons are functionally segregated. In addition, the code is hierarchical, where few neurons participate in encoding multiple cues, whereas other sensory neurons are stimulus specific. This encoding strategy may have evolved to mitigate the constraints of a compact sensory system.


Assuntos
Caenorhabditis elegans/fisiologia , Mecanotransdução Celular/fisiologia , Rede Nervosa/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Animais Geneticamente Modificados/fisiologia , Caenorhabditis elegans/citologia , Cálcio/metabolismo , Rede Nervosa/citologia , Células Receptoras Sensoriais/citologia
18.
PLoS Genet ; 10(8): e1004529, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25101962

RESUMO

Carbon dioxide (CO2) is a key molecule in many biological processes; however, mechanisms by which organisms sense and respond to high CO2 levels remain largely unknown. Here we report that acute CO2 exposure leads to a rapid cessation in the contraction of the pharynx muscles in Caenorhabditis elegans. To uncover the molecular mechanisms underlying this response, we performed a forward genetic screen and found that hid-1, a key component in neuropeptide signaling, regulates this inhibition in muscle contraction. Surprisingly, we found that this hid-1-mediated pathway is independent of any previously known pathways controlling CO2 avoidance and oxygen sensing. In addition, animals with mutations in unc-31 and egl-21 (neuropeptide secretion and maturation components) show impaired inhibition of muscle contraction following acute exposure to high CO2 levels, in further support of our findings. Interestingly, the observed response in the pharynx muscle requires the BAG neurons, which also mediate CO2 avoidance. This novel hid-1-mediated pathway sheds new light on the physiological effects of high CO2 levels on animals at the organism-wide level.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Dióxido de Carbono/toxicidade , Oxigênio/metabolismo , Músculos Faríngeos/efeitos dos fármacos , Proteínas de Transporte Vesicular/genética , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Dióxido de Carbono/metabolismo , Mutação , Músculos Faríngeos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
19.
Methods ; 68(3): 487-91, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24650565

RESUMO

Carbon dioxide (CO2) is an important molecule in cell metabolism. It is also a byproduct of many physiological processes. In humans, impaired lung function and lung diseases disrupt the body's ability to dispose of CO2 and elevate its levels in the body (hypercapnia). Animal models allow further understanding of how CO2 is sensed in the body and what are the physiological responses to high CO2 levels. This information can provide new strategies in the battle against the detrimental effects of CO2 accumulation in lung diseases. The nematode Caenorhabditis elegans provides us with such a model animal due to its natural ability to sense and navigate through varying concentrations of CO2, as well as the fact that it can be genetically manipulated with ease. Here we describe the different methods used to measure the effects elevated levels of CO2 have on the molecular sensing mechanism and physiology of C. elegans.


Assuntos
Caenorhabditis elegans/metabolismo , Dióxido de Carbono/metabolismo , Hipercapnia/metabolismo , Pneumopatias/metabolismo , Animais , Humanos , Hipercapnia/genética , Hipercapnia/patologia , Pneumopatias/genética , Pneumopatias/patologia , Modelos Animais
20.
PLoS Biol ; 10(1): e1001237, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22253572

RESUMO

The nematode C. elegans is an important model for the study of social behaviors. Recent investigations have shown that a family of small molecule signals, the ascarosides, controls population density sensing and mating behavior. However, despite extensive studies of C. elegans aggregation behaviors, no intraspecific signals promoting attraction or aggregation of wild-type hermaphrodites have been identified. Using comparative metabolomics, we show that the known ascarosides are accompanied by a series of derivatives featuring a tryptophan-derived indole moiety. Behavioral assays demonstrate that these indole ascarosides serve as potent intraspecific attraction and aggregation signals for hermaphrodites, in contrast to ascarosides lacking the indole group, which are repulsive. Hermaphrodite attraction to indole ascarosides depends on the ASK amphid sensory neurons. Downstream of the ASK sensory neuron, the interneuron AIA is required for mediating attraction to indole ascarosides instead of the RMG interneurons, which previous studies have shown to integrate attraction and aggregation signals from ASK and other sensory neurons. The role of the RMG interneuron in mediating aggregation and attraction is thought to depend on the neuropeptide Y-like receptor NPR-1, because solitary and social C. elegans strains are distinguished by different npr-1 variants. We show that indole ascarosides promote attraction and aggregation in both solitary and social C. elegans strains. The identification of indole ascarosides as aggregation signals reveals unexpected complexity of social signaling in C. elegans, which appears to be based on a modular library of ascarosides integrating building blocks derived from lipid ß-oxidation and amino-acid metabolism. Variation of modules results in strongly altered signaling content, as addition of a tryptophan-derived indole unit to repellent ascarosides produces strongly attractive indole ascarosides. Our findings show that the library of ascarosides represents a highly developed chemical language integrating different neurophysiological pathways to mediate social communication in C. elegans.


Assuntos
Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Comportamento Social , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Glicolipídeos/química , Glicolipídeos/farmacologia , Glicosídeos/análise , Glicosídeos/metabolismo , Glicosídeos/farmacologia , Organismos Hermafroditas/efeitos dos fármacos , Organismos Hermafroditas/metabolismo , Metaboloma/efeitos dos fármacos , Metaboloma/fisiologia , Metabolômica/métodos , Modelos Biológicos , Feromônios/química , Feromônios/metabolismo , Feromônios/farmacologia , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Triptofano/química , Triptofano/metabolismo , Triptofano/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...