Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 80, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200107

RESUMO

Vagus nerve signaling is a key component of the gut-brain axis and regulates diverse physiological processes that decline with age. Gut to brain vagus firing patterns are regulated by myenteric intrinsic primary afferent neuron (IPAN) to vagus neurotransmission. It remains unclear how IPANs or the afferent vagus age functionally. Here we identified a distinct ageing code in gut to brain neurotransmission defined by consistent differences in firing rates, burst durations, interburst and intraburst firing intervals of IPANs and the vagus, when comparing young and aged neurons. The aminosterol squalamine changed aged neurons firing patterns to a young phenotype. In contrast to young neurons, sertraline failed to increase firing rates in the aged vagus whereas squalamine was effective. These results may have implications for improved treatments involving pharmacological and electrical stimulation of the vagus for age-related mood and other disorders. For example, oral squalamine might be substituted for or added to sertraline for the aged.


Assuntos
Células Receptoras Sensoriais , Sertralina , Colestanóis , Nervo Vago
2.
J Med Chem ; 66(14): 9519-9536, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37433124

RESUMO

Natural aminosterols are promising drug candidates against neurodegenerative diseases, like Alzheimer and Parkinson, and one relevant protective mechanism occurs via their binding to biological membranes and displacement or binding inhibition of amyloidogenic proteins and their cytotoxic oligomers. We compared three chemically different aminosterols, finding that they exhibited different (i) binding affinities, (ii) charge neutralizations, (iii) mechanical reinforcements, and (iv) key lipid redistributions within membranes of reconstituted liposomes. They also had different potencies (EC50) in protecting cultured cell membranes against amyloid-ß oligomers. A global fitting analysis led to an analytical equation describing quantitatively the protective effects of aminosterols as a function of their concentration and relevant membrane effects. The analysis correlates aminosterol-mediated protection with well-defined chemical moieties, including the polyamine group inducing a partial membrane-neutralizing effect (79 ± 7%) and the cholestane-like tail causing lipid redistribution and bilayer mechanical resistance (21 ± 7%), linking quantitatively their chemistry to their protective effects on biological membranes.


Assuntos
Doenças Neurodegenerativas , Agregados Proteicos , Humanos , Membrana Celular/metabolismo , Proteínas Amiloidogênicas/química , Doenças Neurodegenerativas/metabolismo , Lipídeos , Bicamadas Lipídicas/metabolismo , Peptídeos beta-Amiloides/metabolismo
3.
Colloids Surf B Biointerfaces ; 222: 113115, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603410

RESUMO

Trodusquemine is an amphipathic aminosterol that has recently shown therapeutic benefit in neurodegenerative diseases altering the binding of misfolded proteins to the cell membrane. To unravel the underlying mechanism, we studied the interactions between Trodusquemine (TRO) and lipid monolayers simulating the outer layer of the plasma membrane. We selected two different compositions of dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM), cholesterol (Chol) and monosialotetrahexosylganglioside (GM1) lipid mixture mimicking either a lipid-raft containing membrane (Ld+So phases) or a single-phase disordered membrane (Ld phase). Surface pressure-area isotherms and surface compressional modulus-area combined with Brewster Angle Microscopy (BAM) provided the thermodynamic and morphological information on the lipid monolayer in the presence of increasing amounts of TRO in the monolayer. Experiments revealed that TRO forms stable spreading monolayers at the buffer-air interface where it undergoes multiple reversible phase transitions to bi- and tri-layers at the interface. When TRO was spread at the interface with the lipid mixtures, we found that it distributes in the lipid monolayer for both the selected lipid compositions, but a maximum TRO uptake in the rafts-containing monolayer was observed for a Lipid/TRO molar ratio equal to 3:2. Statistical analysis of BAM images revealed that TRO induces a decrease in the size of the condensed domains, an increase in their number and in the thickness mismatch between the Ld and So phase. Experiments and MD simulations converge to indicate that TRO adsorbs preferentially at the border of the So domains. Removal of GM1 from the lipid Ld+So mixture resulted in an even greater TRO-mediated reduction of the size of the So domains suggesting that the presence of GM1 hinders the localization of TRO at the So domains boundaries. Taken together these observations suggest that Trodusquemine influences the organization of lipid rafts within the neuronal membrane in a dose-dependent manner whereas it evenly distributes in disordered expanded phases of the membrane model.


Assuntos
Gangliosídeo G(M1) , Membranas Artificiais , Colesterol/química , Microdomínios da Membrana/química
4.
Ann Intern Med ; 175(12): 1666-1674, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343348

RESUMO

BACKGROUND: Parkinson disease (PD) is associated with α-synuclein (αS) aggregation within enteric neurons. ENT-01 inhibits the formation of αS aggregates and improved constipation in an open-label study in patients with PD. OBJECTIVE: To evaluate the safety and efficacy of oral ENT-01 for constipation and neurologic symptoms in patients with PD and constipation. DESIGN: Randomized, placebo-controlled phase 2b study. (ClinicalTrials.gov: NCT03781791). SETTING: Outpatient. PATIENTS: 150 patients with PD and constipation. INTERVENTION: ENT-01 or placebo daily for up to 25 days. After baseline assessment of constipation severity, daily dosing was escalated to the prokinetic dose, the maximum dose (250 mg), or the tolerability limit, followed by a washout period. MEASUREMENTS: The primary efficacy end point was the number of complete spontaneous bowel movements (CSBMs) per week. Neurologic end points included dementia (assessed using the Mini-Mental State Examination [MMSE]) and psychosis (assessed using the Scale for the Assessment of Positive Symptoms adapted for PD [SAPS-PD]). RESULTS: The weekly CSBM rate increased from 0.7 to 3.2 in the ENT-01 group versus 0.7 to 1.2 in the placebo group (P < 0.001). Improvement in secondary end points included SBMs (P = 0.002), stool consistency (P < 0.001), ease of passage (P = 0.006), and laxative use (P = 0.041). In patients with dementia, MMSE scores improved by 3.4 points 6 weeks after treatment in the ENT-01 group (n = 14) versus 2.0 points in the placebo group (n = 14). Among patients with psychosis, SAPS-PD scores improved from 6.5 to 1.7 six weeks after treatment in the ENT-01 group (n = 5) and from 6.3 to 4.4 in the placebo group (n = 6). ENT-01 was well tolerated, with no deaths or drug-related serious adverse events. Adverse events were predominantly gastrointestinal, including nausea (34.4% [ENT-01] vs. 5.3% [placebo]; P < 0.001) and diarrhea (19.4% [ENT-01] vs. 5.3% [placebo]; P = 0.016). LIMITATION: Longer treatment periods need to be investigated in future studies. CONCLUSION: ENT-01 was safe and significantly improved constipation. PRIMARY FUNDING SOURCE: Enterin, Inc.


Assuntos
Demência , Doença de Parkinson , Humanos , Resultado do Tratamento , Constipação Intestinal , Defecação , Método Duplo-Cego
5.
FASEB J ; 36(12): e22655, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421008

RESUMO

Trodusquemine is an aminosterol with a variety of biological and pharmacological functions, such as acting as an antimicrobial, stimulating body weight loss and interfering with the toxicity of proteins involved in the development of Alzheimer's and Parkinson's diseases. The mechanisms of interaction of aminosterols with cells are, however, still largely uncharacterized. Here, by using fluorescently labeled trodusquemine (TRO-A594 and TRO-ATTO565), we show that trodusquemine binds initially to the plasma membrane of living cells, that the binding affinity is dependent on cholesterol, and that trodusquemine is then internalized and mainly targeted to lysosomes after internalization. We also found that TRO-A594 is able to strongly and selectively bind to myelinated fibers in fixed mouse brain slices, and that it is a marker compatible with tissue clearing and light-sheet fluorescence microscopy or expansion microscopy. In conclusion, this work contributes to further characterize the biology of aminosterols and provides a new tool for nerve labeling suitable for the most advanced microscopy techniques.


Assuntos
Colestanos , Animais , Camundongos , Colestanos/farmacologia , Espermina/farmacologia , Microscopia de Fluorescência/métodos , Colesterol
6.
Biomedicines ; 10(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36140180

RESUMO

We analyzed the fecal microbiome by deep sequencing of the 16S ribosomal genes and the metabolomic profiles of 43 intestinal transplant recipients to identify biomarkers of graft function. Stool samples were collected from 23 patients with stable graft function five years or longer after transplant, 15 stable recipients one-year post-transplant and four recipients with refractory rejection and graft loss within one-year post-transplant. Lactobacillus and Streptococcus species were predominant in patients with stable graft function both in the short and long term, with a microbiome profile consistent with the general population. Conversely, Enterococcus species were predominant in patients with refractory rejection as compared to the general population, indicating profound dysbiosis in the context of graft dysfunction. Metabolomic analysis demonstrated significant differences between the three groups, with several metabolites in rejecting recipients clustering as a distinct set. Our study suggests that the bacterial microbiome profile of stable intestinal transplants is similar to the general population, supporting further application of this non-invasive approach to identify biomarkers of intestinal graft function.

7.
Hum Gene Ther ; 33(15-16): 782-788, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35502479

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare and devastating genetic disease, in which soft connective tissue is converted into heterotopic bone through an endochondral ossification process. Patients succumb early as they gradually become trapped in a second skeleton of heterotopic bone. Although the underlying genetic defect is long known, the inherent complexity of the disease has hindered the discovery of effective preventions and treatments. New developments in the gene therapy field have motivated its consideration as an attractive therapeutic option for FOP. However, the immune system's role in FOP activation and the as-yet unknown primary causative cell, are crucial issues which must be taken into account in the therapy design. While gene therapy offers a potential therapeutic solution, more knowledge about FOP is needed to enable its optimal and safe application.


Assuntos
Miosite Ossificante , Ossificação Heterotópica , Receptores de Ativinas Tipo I/genética , Estudos de Viabilidade , Terapia Genética/efeitos adversos , Humanos , Miosite Ossificante/complicações , Miosite Ossificante/genética , Miosite Ossificante/terapia , Ossificação Heterotópica/genética
8.
ACS Chem Neurosci ; 13(8): 1219-1231, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35404569

RESUMO

The molecular composition of the plasma membrane plays a key role in mediating the susceptibility of cells to perturbations induced by toxic molecules. The pharmacological regulation of the properties of the cell membrane has therefore the potential to enhance cellular resilience to a wide variety of chemical and biological compounds. In this study, we investigate the ability of claramine, a blood-brain barrier permeable small molecule in the aminosterol class, to neutralize the toxicity of acute biological threat agents, including melittin from honeybee venom and α-hemolysin from Staphylococcus aureus. Our results show that claramine neutralizes the toxicity of these pore-forming agents by preventing their interactions with cell membranes without perturbing their structures in a detectable manner. We thus demonstrate that the exogenous administration of an aminosterol can tune the properties of lipid membranes and protect cells from diverse biotoxins, including not just misfolded protein oligomers as previously shown but also biological protein-based toxins. Our results indicate that the investigation of regulators of the physicochemical properties of cell membranes offers novel opportunities to develop countermeasures against an extensive set of cytotoxic effects associated with cell membrane disruption.


Assuntos
Encéfalo , Transporte Biológico , Membrana Celular
9.
Cell Rep ; 38(2): 110090, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021075

RESUMO

Alpha-synuclein (αS) is causally involved in the development of Parkinson disease (PD); however, its role in normal vertebrate physiology has remained unknown. Recent studies demonstrate that αS is induced by noroviral infection in the enteric nervous system of children and protects mice against lethal neurotropic viral infection. Additionally, αS is a potent chemotactic activator of phagocytes. In this report, using both wild-type and αS knockout mice, we show that αS is a critical mediator of inflammatory and immune responses. αS is required for the development of a normal inflammatory response to bacterial peptidoglycan introduced into the peritoneal cavity as well as antigen-specific and T cell responses following intraperitoneal immunization. Furthermore, we show that neural cells are the sources of αS required for immune competence. Our report supports the hypothesis that αS accumulates within the nervous system of PD individuals because of an inflammatory/immune response.


Assuntos
Imunidade/fisiologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/fisiologia , Animais , Encéfalo/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Receptor 4 Toll-Like/imunologia , alfa-Sinucleína/genética
10.
Nat Prod Rep ; 39(4): 742-753, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34698757

RESUMO

Covering: 1993 to 2021 (mainly 2017-2021)Alzheimer's and Parkinson's diseases are neurodegenerative conditions affecting over 50 million people worldwide. Since these disorders are still largely intractable pharmacologically, discovering effective treatments is of great urgency and importance. These conditions are characteristically associated with the aberrant deposition of proteinaceous aggregates in the brain, and with the formation of metastable intermediates known as protein misfolded oligomers that play a central role in their aetiology. In this Highlight article, we review the evidence at the physicochemical, cellular, animal model and clinical levels on how the natural products squalamine and trodusquemine offer promising opportunities for chronic treatments for these progressive conditions by preventing both the formation of neurotoxic oligomers and their interaction with cell membranes.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Doenças Neurodegenerativas , Doença de Alzheimer/tratamento farmacológico , Animais , Produtos Biológicos/farmacologia , Físico-Química , Colestanos , Colestanóis , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Espermina/análogos & derivados
11.
Sci Rep ; 11(1): 21130, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702901

RESUMO

The vagus nerve relays mood-altering signals originating in the gut lumen to the brain. In mice, an intact vagus is required to mediate the behavioural effects of both intraluminally applied selective serotonin reuptake inhibitors and a strain of Lactobacillus with antidepressant-like activity. Similarly, the prodepressant effect of lipopolysaccharide is vagus nerve dependent. Single vagal fibres are broadly tuned to respond by excitation to both anti- and prodepressant agents, but it remains unclear how neural responses encode behaviour-specific information. Here we demonstrate using ex vivo experiments that for single vagal fibres within the mesenteric neurovascular bundle supplying the mouse small intestine, a unique neural firing pattern code is common to both chemical and bacterial vagus-dependent antidepressant luminal stimuli. This code is qualitatively and statistically discernible from that evoked by lipopolysaccharide, a non-vagus-dependent antidepressant or control non-antidepressant Lactobacillus strain and are not affected by sex status. We found that all vagus dependent antidepressants evoked a decrease in mean spike interval, increase in spike burst duration, decrease in gap duration between bursts and increase in intra-burst spike intervals. Our results offer a novel neuronal electrical perspective as one explanation for mechanisms of action of gut-derived vagal dependent antidepressants. We expect that our ex vivo individual vagal fibre recording model will improve the design and operation of new, extant electroceutical vagal stimulation devices currently used to treat major depression. Furthermore, use of this vagal antidepressant code should provide a valuable screening tool for novel potential oral antidepressant candidates in preclinical animal models.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antidepressivos , Lactobacillus/química , Inibidores Seletivos de Recaptação de Serotonina , Nervo Vago/fisiopatologia , Animais , Antidepressivos/química , Antidepressivos/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
12.
mBio ; 12(5): e0184721, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34579574

RESUMO

Antimicrobial peptides (AMPs) are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Their wide range of activity against pathogens, including Gram-positive and -negative bacteria, yeasts, fungi, and enveloped viruses makes them a fundamental component of innate immunity. Marra et al. (A. Marra, M. A. Hanson, S. Kondo, B. Erkosar, B. Lemaitre, mBio 12:e0082421, 2021, https://doi.org/10.1128/mBio.00824-21) use the analytical potential of Drosophila to show that AMPs and lysozymes play a direct role in controlling the composition and abundance of the beneficial gut microbiome. By comparing mutant and wild-type flies, they demonstrated that the specific loss of AMPs and lysozyme production results in changes in microbiome abundance and composition. Furthermore, they established that AMPs and lysozyme are particularly essential in aging flies. Studies of early emerging metazoans, other invertebrates, and humans support the view of an ancestral function of AMPs in controlling microbial colonization.


Assuntos
Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Bactérias/efeitos dos fármacos , Drosophila , Fungos , Humanos , Hydra , Imunidade Inata , Muramidase , Imunidade Vegetal , Simbiose , Vírus
13.
ACS Chem Neurosci ; 12(17): 3189-3202, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382791

RESUMO

Many neurodegenerative diseases are associated with the self-assembly of peptides and proteins into fibrillar aggregates. Soluble misfolded oligomers formed during the aggregation process, or released by mature fibrils, play a relevant role in neurodegenerative processes through their interactions with neuronal membranes. However, the determinants of the cytotoxicity of these oligomers are still unclear. Here we used liposomes and toxic and nontoxic oligomers formed by the same protein to measure quantitatively the affinity of the two oligomeric species for lipid membranes. To this aim, we quantified the perturbation to the lipid membranes caused by the two oligomers by using the fluorescence quenching of two probes embedded in the polar and apolar regions of the lipid membranes and a well-defined protein-oligomer binding assay using fluorescently labeled oligomers to determine the Stern-Volmer and dissociation constants, respectively. With both approaches, we found that the toxic oligomers have a membrane affinity 20-25 times higher than that of nontoxic oligomers. Circular dichroism, intrinsic fluorescence, and FRET indicated that neither oligomer type changes its structure upon membrane interaction. Using liposomes enriched with trodusquemine, a potential small molecule drug known to penetrate lipid membranes and make them refractory to toxic oligomers, we found that the membrane affinity of the oligomers was remarkably lower. At protective concentrations of the small molecule, the binding of the oligomers to the lipid membranes was fully prevented. Furthermore, the affinity of the toxic oligomers for the lipid membranes was found to increase and slightly decrease with GM1 ganglioside and cholesterol content, respectively, indicating that physicochemical properties of lipid membranes modulate their affinity for misfolded oligomeric species.


Assuntos
Colestanos , Bicamadas Lipídicas , Peptídeos beta-Amiloides , Gangliosídeo G(M1) , Espermina/análogos & derivados
14.
Front Neurosci ; 15: 680026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220435

RESUMO

The aberrant aggregation of proteins is a key molecular event in the development and progression of a wide range of neurodegenerative disorders. We have shown previously that squalamine and trodusquemine, two natural products in the aminosterol class, can modulate the aggregation of the amyloid-ß peptide (Aß) and of α-synuclein (αS), which are associated with Alzheimer's and Parkinson's diseases. In this work, we expand our previous analyses to two squalamine derivatives, des-squalamine and α-squalamine, obtaining further insights into the mechanism by which aminosterols modulate Aß and αS aggregation. We then characterize the ability of these small molecules to alter the physicochemical properties of stabilized oligomeric species in vitro and to suppress the toxicity of these aggregates to varying degrees toward human neuroblastoma cells. We found that, despite the fact that these aminosterols exert opposing effects on Aß and αS aggregation under the conditions that we tested, the modifications that they induced to the toxicity of oligomers were similar. Our results indicate that the suppression of toxicity is mediated by the displacement of toxic oligomeric species from cellular membranes by the aminosterols. This study, thus, provides evidence that aminosterols could be rationally optimized in drug discovery programs to target oligomer toxicity in Alzheimer's and Parkinson's diseases.

15.
Neurobiol Dis ; 156: 105402, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34044147

RESUMO

Mutations in the beta-amyloid protein (APP) cause familial Alzheimer's disease. In hAPP-J20 mice expressing mutant APP, pharmacological inhibition or genetic ablation of the tyrosine phosphatase PTP1B prevents CA3 hippocampus neuron loss and cognitive decline. However, how targeting PTP1B affects the cellular mechanisms underlying these cognitive deficits remains unknown. Changes in synaptic strength at the hippocampus can affect information processing for learning and memory. While prior studies have focused on post-synaptic mechanisms to account for synaptic deficits in Alzheimer's disease models, presynaptic mechanisms may also be affected. Here, using whole cell patch-clamp recording, coefficient of variation (CV) analysis suggested a profound presynaptic deficit in long-term potentiation (LTP) of CA3:CA1 synapses in hAPP-J20 mice. While the membrane-impermeable ionotropic NMDA receptor (NMDAR) blocker norketamine in the post-synaptic recording electrode had no effect on LTP, additional bath application of the ionotropic NMDAR blockers MK801 could replicate the deficit in LTP in wild type mice. In contrast to LTP, the paired-pulse ratio and short-term facilitation (STF) were aberrantly increased in hAPP-J20 mice. These synaptic deficits in hAPP-J20 mice were associated with reduced phosphorylation of NMDAR GluN2B and the synaptic vesicle recycling protein NSF (N-ethylmaleimide sensitive factor). Phosphorylation of both proteins, together with synaptic plasticity and cognitive function, were restored by PTP1B ablation or inhibition by the PTP1B-selective inhibitor Trodusquemine. Taken together, our results indicate that PTP1B impairs presynaptic NMDAR-mediated synaptic plasticity required for spatial learning in a mouse model of Alzheimer's disease. Since Trodusquemine has undergone phase 1/2 clinical trials to treat obesity, it could be repurposed to treat Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Plasticidade Neuronal/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Pré-Sinápticos/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Animais , Colestanos/farmacologia , Colestanos/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores Pré-Sinápticos/genética , Espermina/análogos & derivados , Espermina/farmacologia , Espermina/uso terapêutico
16.
Neurobiol Dis ; 155: 105397, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34015491

RESUMO

Subanesthetic doses of ketamine induce schizophrenia-like behaviors in mice including hyperlocomotion and deficits in working memory and sensorimotor gating. Here, we examined the effect of in vivo ketamine administration on neuronal properties and endocannabinoid (eCB)-dependent modulation of synaptic transmission onto layer 2/3 pyramidal neurons in brain slices of the prefrontal cortex, a region tied to the schizophrenia-like behavioral phenotypes of ketamine. Since deficits in working memory and sensorimotor gating are tied to activation of the tyrosine phosphatase PTP1B in glutamatergic neurons, we asked whether PTP1B contributes to these effects of ketamine. Ketamine increased membrane resistance and excitability of pyramidal neurons. Systemic pharmacological inhibition of PTP1B by Trodusquemine restored these neuronal properties and prevented each of the three main ketamine-induced behavior deficits. Ketamine also reduced mobilization of eCB by pyramidal neurons, while unexpectedly reducing their inhibitory inputs, and these effects of ketamine were blocked or occluded by PTP1B ablation in glutamatergic neurons. While ablation of PTP1B in glutamatergic neurons prevented ketamine-induced deficits in memory and sensorimotor gating, it failed to prevent hyperlocomotion (a psychosis-like phenotype). Taken together, these results suggest that PTP1B in glutamatergic neurons mediates ketamine-induced deficits in eCB mobilization, memory and sensorimotor gating whereas PTP1B in other cell types contributes to hyperlocomotion. Our study suggests that the PTP1B inhibitor Trodusquemine may represent a new class of fast-acting antipsychotic drugs to treat schizophrenia-like symptoms.


Assuntos
Colestanos/farmacologia , Ketamina/toxicidade , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Esquizofrenia/induzido quimicamente , Esquizofrenia/prevenção & controle , Espermina/análogos & derivados , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Anestésicos Dissociativos/toxicidade , Animais , Colestanos/uso terapêutico , Relação Dose-Resposta a Droga , Proteínas com Domínio LIM/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Esquizofrenia/metabolismo , Espermina/farmacologia , Espermina/uso terapêutico
17.
Front Cell Dev Biol ; 9: 552549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33829010

RESUMO

The aggregation of α-synuclein is a hallmark of Parkinson's disease (PD) and a variety of related neurological disorders. A number of mutations in this protein, including A30P and A53T, are associated with familial forms of the disease. Patients carrying the A30P mutation typically exhibit a similar age of onset and symptoms as sporadic PD, while those carrying the A53T mutation generally have an earlier age of onset and an accelerated progression. We report two C. elegans models of PD (PDA30P and PDA53T), which express these mutational variants in the muscle cells, and probed their behavior relative to animals expressing the wild-type protein (PDWT). PDA30P worms showed a reduced speed of movement and an increased paralysis rate, control worms, but no change in the frequency of body bends. By contrast, in PDA53T worms both speed and frequency of body bends were significantly decreased, and paralysis rate was increased. α-Synuclein was also observed to be less well localized into aggregates in PDA30P worms compared to PDA53T and PDWT worms, and amyloid-like features were evident later in the life of the animals, despite comparable levels of expression of α-synuclein. Furthermore, squalamine, a natural product currently in clinical trials for treating symptomatic aspects of PD, was found to reduce significantly the aggregation of α-synuclein and its associated toxicity in PDA53T and PDWT worms, but had less marked effects in PDA30P. In addition, using an antibody that targets the N-terminal region of α-synuclein, we observed a suppression of toxicity in PDA30P, PDA53T and PDWT worms. These results illustrate the use of these two C. elegans models in fundamental and applied PD research.

19.
Am J Transplant ; 21(2): 787-797, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32594614

RESUMO

Although innate lymphoid cells (ILCs) play fundamental roles in mucosal barrier functionality and tissue homeostasis, ILC-related mechanisms underlying intestinal barrier function, homeostatic regulation, and graft rejection in intestinal transplantation (ITx) patients have yet to be thoroughly defined. We found protective type 3 NKp44+ ILCs (ILC3s) to be significantly diminished in newly transplanted allografts, compared to allografts at 6 months, whereas proinflammatory type 1 NKp44- ILCs (ILC1s) were higher. Moreover, serial immunomonitoring revealed that in healthy allografts, protective ILC3s repopulate by 2-4 weeks postoperatively, but in rejecting allografts they remain diminished. Intracellular cytokine staining confirmed that NKp44+ ILC3 produced protective interleukin-22 (IL-22), whereas ILC1s produced proinflammatory interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Our findings about the paucity of protective ILC3s immediately following transplant and their repopulation in healthy allografts during the first month following transplant were confirmed by RNA-sequencing analyses of serial ITx biopsies. Overall, our findings show that ILCs may play a key role in regulating ITx graft homeostasis and could serve as sentinels for early recognition of allograft rejection and be targets for future therapies.


Assuntos
Imunidade Inata , Linfócitos , Citocinas , Humanos , Interferon gama , Intestinos
20.
Am J Transplant ; 21(2): 876-882, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32721092

RESUMO

By presenting the first case report of true operational tolerance in an intestinal transplant patient, we aim to demonstrate that tolerance is possible in a field that has been hampered by suboptimal outcomes. Although operational tolerance has been achieved in liver and kidney transplantation, and some intestinal transplant patients have been able to decrease immunosuppression, this is the first instance of true operational tolerance after complete cessation of immunosuppression. A patient received a deceased-donor small intestinal and colon allograft with standard immunosuppressive treatment, achieving excellent graft function after overcoming a graft-versus-host-disease episode 5 months posttransplant. Four years later, against medical advice, the patient discontinued all immunosuppression. During follow-up visits 2 and 3 years after cessation of immunosuppression, the patient exhibited normal graft function with full enteral autonomy and without histological or endoscopic signs of rejection. Mechanistic analysis demonstrated immune competence against third party antigen, with in vitro evidence of donor-specific hyporesponsiveness in the absence of donor macrochimerism. This proof of principle case can stimulate future mechanistic studies on diagnostic and therapeutic strategies, for example, cellular therapy trials, that can lead to minimization or elimination of immunosuppression and, it is hoped, help revitalize the field of intestinal transplantation.


Assuntos
Terapia de Imunossupressão , Imunossupressores , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto , Humanos , Tolerância Imunológica , Intestinos , Tolerância ao Transplante , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...