Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Zool B Mol Dev Evol ; 342(4): 335-341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38686706

RESUMO

Evolutionary developmental biology (Evo-Devo) is flourishing in Latin America, particularly Argentina, where researchers are leveraging this integrative field to unlock the secrets of the region's remarkable biodiversity. A recent symposium held at the 5th Argentinean Meeting on Evolutionary Biology (RABE V) showcased a vibrant Evo-Devo community and the diversity of its research endeavors. The symposium included 3 plenary talks, 3 short talks, and 12 posters, and spanned a range of organisms and approaches. Interestingly, the symposium highlighted a prevalence of "top-down" Evo-Devo studies in the region, where researchers first analyze existing diversity and then propose potential developmental mechanisms. This approach, driven in part by financial constraints and the region's historical focus on natural history, presents a unique opportunity to bridge disciplines like comparative biology, paleontology, and botany. The symposium's success underscores the vital role of Evo-Devo in Latin America, not only for advancing our understanding of evolution but also for providing valuable tools to conserve and manage the region's irreplaceable biodiversity. As Evo-Devo continues to grow in Latin America, fostering collaboration and knowledge exchange within the region and beyond will be crucial for realizing the full potential of this transformative field.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Argentina , Biodiversidade , Animais
2.
Artigo em Inglês | MEDLINE | ID: mdl-38178621
3.
Zookeys ; 1181: 167-200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841031

RESUMO

The marine ribbon worm genus Tetranemertes Chernyshev, 1992 currently includes three species: the type species T.antonina (Quatrefages, 1846) from the Mediterranean Sea, T.rubrolineata (Kirsteuer, 1965) from Madagascar, and T.hermaphroditica (Gibson, 1982) from Australia. Seven new species are described: T.bifrostsp. nov., T.ocelatasp. nov., T.majinbuuisp. nov., and T.pastafariensissp. nov. from the Caribbean Sea (Panamá), and three species, T.unistriatasp. nov., T.paulayisp. nov., and T.arabicasp. nov., from the Indo-West Pacific (Japan and Oman). As a result, an amended morphological diagnosis of the genus is offered. To improve nomenclatural stability, a neotype of Tetranemertesantonina is designated from the Mediterranean. The newly described species, each characterized by features of external appearance and stylet apparatus, as well as by DNA-barcodes, form a well-supported clade with T.antonina on a molecular phylogeny of monostiliferan hoplonemerteans based on partial sequences of COI, 16S rRNA, 18S rRNA, and 28S rRNA. Six of the seven newly described species, as well as T.rubrolineata, possess the unusual character of having a central stylet basis slightly bilobed to deeply forked posteriorly in fully grown individuals, a possible morphological synapomorphy of the genus. In addition, an undescribed species of Tetranemertes is reported from the Eastern Tropical Pacific (Panamá), increasing the total number of known species in the genus to eleven.

4.
Mol Biol Rep ; 50(1): 309-318, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36331753

RESUMO

BACKGROUND: Historical reconstructions within Podocarpaceae have provided valuable information to disentangle biogeographic scenarios that begun 65 Mya. However, early molecular phylogenies of Podocarpaceae failed to agree on the intergeneric relationships within the family. The aims of this study were to test whether plastome organization is stable within the genus Podocarpus, to estimate the selective regimes affecting plastome protein-coding genes, and to strengthen our understanding of the phylogenetic relationships and biogeographic history. METHODS AND RESULTS: We sequenced the plastomes of four South American species from Patagonia, southern Yungas, and Brazilian subtropical forests. We compared their plastomes to those published from Brazil, Africa, New Zealand, and Southeast Asia, along with representatives from other genera within Podocarpaceae as outgroups. The four newly sequenced plastomes ranged in size between 133,791 bp and 133,991 bp. Gene content and order among chloroplasts from South American, African and Asian Podocarpus were conserved and different from the plastome of P. totara, from New Zealand. Most genes showed substitution patterns consistent with a conservative selective regime. Phylogenies inferred from either complete sequences or protein coding regions were mostly congruent with previous studies, but showed earlier branching of P. salignus, P. totara and P. sellowii. CONCLUSIONS: Highly similar and conserved plastomes of African, South American and Asian species suggest that P. totara plastome should be revised and compared to other species from Oceanic distribution. Furthermore, given such structural conservation, we suggest plastome sequencing is not useful to test whether genomic order can be climatically or geologically structured.


Assuntos
Cloroplastos , Genômica , Filogenia , Sequência de Bases , Brasil
5.
Methods Mol Biol ; 2450: 227-243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359311

RESUMO

Whole-body regeneration, the ability to reconstruct complete individuals from small fragments, is rare among ribbon worms (phylum Nemertea) but present in the pilidiophoran species Lineus sanguineus. This species can regenerate complete individuals from a tiny midbody section, and even from a quarter of a piece, provided it retains a fragment of a lateral nerve cord. While a few other unrelated species of ribbon worms are also excellent regenerators, L. sanguineus is unique in having evolved its regenerative abilities quite recently and thus offers an exceptional opportunity to gain insight into the evolutionary mechanisms of regeneration enhancement. Interestingly, both its sister species Lineus lacteus and Lineus pseudolacteus, a third species derived from the recent hybridization of the other two, differ in their regeneration abilities: while L. lacteus is uncapable of regenerating a lost head, L. pseudolacteus is capable of anterior regeneration, albeit at a slower rate than L. sanguineus. L. sanguineus has a worldwide distribution in temperate shores of both hemispheres, is readily found at intertidal habitats, and can survive, feed and be bred through asexual replication with minimal effort in laboratory settings. All the above make this species a superb candidate for studies of regenerative biology. In this chapter, we present protocols to collect, identify and breed L. sanguineus to study the extraordinary whole-body regeneration abilities found in this species.


Assuntos
Evolução Biológica , Invertebrados , Animais , Hibridização Genética , Testes Imunológicos
6.
Biol Lett ; 18(4): 20210596, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35414224

RESUMO

Biodiversity assessments are critical for setting conservation priorities, understanding ecosystem function and establishing a baseline to monitor change. Surveys of marine biodiversity that rely almost entirely on sampling adult organisms underestimate diversity because they tend to be limited to habitat types and individuals that can be easily surveyed. Many marine animals have planktonic larvae that can be sampled from the water column at shallow depths. This life stage often is overlooked in surveys but can be used to relatively rapidly document diversity, especially for the many species that are rare or live cryptically as adults. Using DNA barcode data from samples of nemertean worms collected in three biogeographical regions-Northeastern Pacific, the Caribbean Sea and Eastern Tropical Pacific-we found that most species were collected as either benthic adults or planktonic larvae but seldom in both stages. Randomization tests show that this deficit of operational taxonomic units collected as both adults and larvae is extremely unlikely if larvae and adults were drawn from the same pool of species. This effect persists even in well-studied faunas. These results suggest that sampling planktonic larvae offers access to a different subset of species and thus significantly increases estimates of biodiversity compared to sampling adults alone. Spanish abstract is available in the electronic supplementary material.


Assuntos
Biodiversidade , Ecossistema , Animais , Região do Caribe , DNA , Código de Barras de DNA Taxonômico , Larva/genética
8.
Evodevo ; 13(1): 1, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980236

RESUMO

BACKGROUND: Understanding the relationship between macroevolutionary diversity and variation in organism development is an important goal of evolutionary biology. Variation in the morphology of several plant and animal lineages is attributed to pedomorphosis, a case of heterochrony, where an ancestral juvenile shape is retained in an adult descendant. Pedomorphosis facilitated morphological adaptation in different plant lineages, but its cellular and molecular basis needs further exploration. Plant development differs from animal development in that cells are enclosed by cell walls and do not migrate. Moreover, in many plant lineages, the differentiated epidermis of leaves, and leaf-derived structures, such as petals, limits organ growth. We, therefore, proposed that pedomorphosis in leaves, and in leaf-derived structures, results from delayed differentiation of epidermal cells with respect to reproductive maturity. This idea was explored for petal evolution, given the importance of corolla morphology for angiosperm reproductive success. RESULTS: By comparing cell morphology and transcriptional profiles between 5 mm flower buds and mature flowers of an entomophile and an ornitophile Loasoideae species (a lineage that experienced transitions from bee- to hummingbird-pollination), we show that evolution of pedomorphic petals of the ornithophile species likely involved delayed differentiation of epidermal cells with respect to flower maturity. We also found that developmental mechanisms other than pedomorphosis might have contributed to evolution of corolla morphology. CONCLUSIONS: Our results highlight a need for considering alternatives to the flower-centric perspective when studying the origin of variation in flower morphology, as this can be generated by developmental processes that are also shared with leaves.

9.
Front Cell Dev Biol ; 9: 780422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912808

RESUMO

The mechanisms supporting regeneration and successful recovery of function have fascinated scientists and the general public for quite some time, with the earliest description of regeneration occurring in the 8th century BC through the Greek mythological story of Prometheus. While most animals demonstrate the capacity for wound-healing, the ability to initiate a developmental process that leads to a partial or complete replacement of a lost structure varies widely among animal taxa. Variation also occurs within single species based on the nature and location of the wound and the developmental stage or age of the individual. Comparative studies of cellular and molecular changes that occur both during, and following, wound healing may point to conserved genomic pathways among animals of different regenerative capacity. Such insights could revolutionize studies within the field of regenerative medicine. In this review, we focus on several closely related species of Lumbriculus (Clitellata: Lumbriculidae), as we present a case for revisiting the use of an annelid model system for the study of regeneration. We hope that this review will provide a primer to Lumbriculus biology not only for regeneration researchers but also for STEM teachers and their students.

10.
Methods Mol Biol ; 2219: 163-180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33074540

RESUMO

Many species of aquatic worms, including members of the phyla Nemertea, Annelida, Platyhelminthes, and Xenacoelomorpha, can regenerate large parts of their body after amputation. In most species, cell proliferation plays key roles in the reconstruction of lost tissues. For example, in annelids and flatworms, inhibition of cell proliferation by irradiation or chemicals prevents regeneration. Cell proliferation also plays crucial roles in growth, body patterning (e.g., segmentation) and asexual reproduction in many groups of aquatic worms. Cell proliferation dynamics in these organisms can be studied using immunohistochemical detection of proteins expressed during proliferation-associated processes or by incorporation and labeling of thymidine analogues during DNA replication. In this chapter, we present protocols for labeling and quantifying cell proliferation by (a) antibody-based detection of either phosphorylated histone H3 during mitosis or proliferating cell nuclear antigen (PCNA) during S-phase, and (b) incorporation of two thymidine analogues, 5'-bromo-2'-deoxyuridine (BrdU) and 5'-ethynyl-2'-deoxyuridine (EdU), detected by immunohistochemistry or inorganic "click" chemistry, respectively. Although these protocols have been developed for whole mounts of small (<2 cm) marine and freshwater worms, they can also be adapted for use in larger specimens or tissue sections.


Assuntos
Anelídeos/fisiologia , Platelmintos/fisiologia , Animais , Anelídeos/citologia , Ciclo Celular , Proliferação de Células , Química Click/métodos , Imuno-Histoquímica/métodos , Platelmintos/citologia , Regeneração , Fixação de Tecidos/métodos
11.
Nat Ecol Evol ; 4(7): 970-978, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424280

RESUMO

Nutrition-responsive development is a ubiquitous and highly diversified example of phenotypic plasticity, yet its underlying molecular and developmental mechanisms and modes of evolutionary diversification remain poorly understood. We measured genome-wide transcription in three closely related species of horned beetles exhibiting strikingly diverse degrees of nutrition responsiveness in the development of male weaponry. We show that (1) counts of differentially expressed genes between low- and high-nutritional backgrounds mirror species-specific degrees of morphological nutrition responsiveness; (2) evolutionary exaggeration of morphological responsiveness is underlain by both amplification of ancestral nutrition-responsive gene expression and recruitment of formerly low nutritionally responsive genes; and (3) secondary loss of morphological responsiveness to nutrition coincides with a dramatic reduction in gene expression plasticity. Our results further implicate genetic accommodation of ancestrally high variability of gene expression plasticity in both exaggeration and loss of nutritional plasticity, yet reject a major role of taxon-restricted genes in the developmental regulation and evolution of nutritional plasticity.


Assuntos
Besouros , Insetos , Adaptação Fisiológica , Animais , Expressão Gênica , Masculino
12.
Proc Biol Sci ; 286(1898): 20182524, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30836873

RESUMO

Animals vary widely in their ability to regenerate, suggesting that regenerative ability has a rich evolutionary history. However, our understanding of this history remains limited because regenerative ability has only been evaluated in a tiny fraction of species. Available comparative regeneration studies have identified losses of regenerative ability, yet clear documentation of gains is lacking. We assessed ability to regenerate heads and tails either through our own experiments or from literature reports for 35 species of Nemertea spanning the diversity of the phylum, including representatives of 10 families and all three orders. We generated a phylogenetic framework using sequence data to reconstruct the evolutionary history of head and tail regenerative ability across the phylum and found that all evaluated species can remake a posterior end but surprisingly few could regenerate a complete head. Our analysis reconstructs a nemertean ancestor unable to regenerate a head and indicates independent gains of head regenerative ability in at least four separate lineages, with one of these gains taking place as recently as the last 10-15 Myr. Our study highlights nemerteans as a valuable group for studying evolution of regeneration and identifying mechanisms associated with repeated gains of regenerative ability.


Assuntos
Invertebrados/fisiologia , Regeneração , Animais , Evolução Biológica , Cabeça/fisiologia , Especificidade da Espécie
13.
Proc Natl Acad Sci U S A ; 114(45): 12021-12026, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078401

RESUMO

Complex traits like limbs, brains, or eyes form through coordinated integration of diverse cell fates across developmental space and time, yet understanding how complexity and integration emerge from uniform, undifferentiated precursor tissues remains limited. Here, we use ectopic eye formation as a paradigm to investigate the emergence and integration of novel complex structures following massive ontogenetic perturbation. We show that down-regulation via RNAi of a single head patterning gene-orthodenticle-induces ectopic structures externally resembling compound eyes at the middorsal adult head of both basal and derived scarabaeid beetle species (Onthophagini and Oniticellini). Scanning electron microscopy documents ommatidial organization of these induced structures, while immunohistochemistry reveals the presence of rudimentary ommatidial lenses, crystalline cones, and associated neural-like tissue within them. Further, RNA-sequencing experiments show that after orthodenticle down-regulation, the transcriptional signature of the middorsal head-the location of ectopic eye induction-converges onto that of regular compound eyes, including up-regulation of several retina-specific genes. Finally, a light-aversion behavioral assay to assess functionality reveals that ectopic compound eyes can rescue the ability to respond to visual stimuli when wild-type eyes are surgically removed. Combined, our results show that knockdown of a single gene is sufficient for the middorsal head to acquire the competence to ectopically generate a functional compound eye-like structure. These findings highlight the buffering capacity of developmental systems, allowing massive genetic perturbations to be channeled toward orderly and functional developmental outcomes, and render ectopic eye formation a widely accessible paradigm to study the evolution of complex systems.


Assuntos
Besouros/fisiologia , Olho Composto de Artrópodes/fisiologia , Retina/fisiologia , Animais , Padronização Corporal/genética , Besouros/genética , Regulação para Baixo/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Cristalino/fisiologia , Interferência de RNA/fisiologia , Regulação para Cima/genética
14.
J Exp Zool B Mol Dev Evol ; 328(1-2): 5-40, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27491339

RESUMO

Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Pesquisa , Animais , América Latina
15.
Evodevo ; 7: 22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27708756

RESUMO

BACKGROUND: Gonads are specialized gamete-producing structures that, despite their functional importance, are generated by diverse mechanisms across groups of animals and can be among the most plastic organs of the body. Annelids, the segmented worms, are a group in which gonads have been documented to be plastic and to be able to regenerate, but little is known about what factors influence gonad development or how these structures regenerate. In this study, we aimed to identify factors that influence the presence and size of gonads and to investigate gonad regeneration in the small asexually reproducing annelid, Pristina leidyi. RESULTS: We found that gonad presence and size in asexual adult P. leidyi are highly variable across individuals and identified several factors that influence these structures. An extrinsic factor, food availability, and two intrinsic factors, individual age and parental age, strongly influence the presence and size of gonads in P. leidyi. We also found that following head amputation in this species, gonads can develop by morphallactic regeneration in previously non-gonadal segments. We also identified a sexually mature individual from our laboratory culture that demonstrates that, although our laboratory strain reproduces only asexually, it retains the potential to become fully sexual. CONCLUSIONS: Our findings demonstrate that gonads in P. leidyi display high phenotypic plasticity and flexibility with respect to their presence, their size, and the segments in which they can form. Considering our findings along with relevant data from other species, we find that, as a group, clitellate annelids can form gonads in at least four different contexts: post-starvation refeeding, fission, morphallactic regeneration, and epimorphic regeneration. This group is thus particularly useful for investigating the mechanisms involved in gonad formation and the evolution of post-embryonic phenotypic plasticity.

16.
J Exp Zool B Mol Dev Evol ; 326(5): 271-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27381037

RESUMO

The integration of form and function of novel traits is a fundamental process during the developmental evolution of complex organisms, yet how novel traits and trait functions integrate into preexisting contexts remains poorly understood. Here, we explore the mechanisms by which the adult insect head has been able to integrate novel traits and features during its ontogeny, focusing on the cephalic horns of Onthophagus beetles. Specifically, using a microablation approach we investigate how different regions of the dorsal head of adult horned beetles relate to their larval and embryonic counterparts and test whether deeply conserved regional boundaries that establish the embryonic head might also facilitate or bias the positioning of cephalic horns along the dorsal adult head. We find that paired posterior horns-the most widespread horn type within the genus-are positioned along a border homologous to the embryonic clypeolabral (CL)-ocular boundary, and that this placement constitutes the ancestral form of horn positioning. In contrast, we observed that the phylogenetically much rarer anterior horns are positioned by larval head regions contained firmly within the CL segment and away from any major preexisting larval head landmarks or boundaries. Lastly, we describe the unexpected finding that ablations at medial head regions can result in ectopic outgrowths bearing terminal structures resembling the more anterior clypeal ridge. We discuss our results in the light of the developmental genetic mechanisms of head formation in holometabolous insects and the role of co-option in innovation and bias in developmental evolution.


Assuntos
Besouros/anatomia & histologia , Animais , Evolução Biológica , Besouros/embriologia , Besouros/crescimento & desenvolvimento , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/embriologia , Feminino , Cabeça/anatomia & histologia , Cabeça/embriologia , Cabeça/crescimento & desenvolvimento , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Masculino
17.
Proc Biol Sci ; 283(1834)2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27412276

RESUMO

The origin and integration of novel traits are fundamental processes during the developmental evolution of complex organisms. Yet how novel traits integrate into pre-existing contexts remains poorly understood. Beetle horns represent a spectacular evolutionary novelty integrated within the context of the adult dorsal head, a highly conserved trait complex present since the origin of insects. We investigated whether otd1/2 and six3, members of a highly conserved gene network that instructs the formation of the anterior end of most bilaterians, also play roles in patterning more recently evolved traits. Using ablation-based fate-mapping, comparative larval RNA interference (RNAi) and transcript sequencing, we found that otd1/2, but not six3, play a fundamental role in the post-embryonic formation of the adult dorsal head and head horns of Onthophagus beetles. By contrast, neither gene appears to pattern the adult head of Tribolium flour beetles even though all are expressed in the dorsal head epidermis of both Onthophagus and Tribolium We propose that, at least in beetles, the roles of otd genes during post-embryonic development are decoupled from their embryonic functions, and that potentially non-functional post-embryonic expression in the dorsal head facilitated their co-option into a novel horn-patterning network during Onthophagus evolution.


Assuntos
Padronização Corporal/genética , Besouros/crescimento & desenvolvimento , Besouros/genética , Cabeça/anatomia & histologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Cabeça/embriologia , Larva , Fenótipo , Interferência de RNA
18.
BMC Dev Biol ; 16: 6, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27006129

RESUMO

BACKGROUND: Time-lapse imaging has proven highly valuable for studying development, yielding data of much finer resolution than traditional "still-shot" studies and allowing direct examination of tissue and cell dynamics. A major challenge for time-lapse imaging of animals is keeping specimens immobile yet healthy for extended periods of time. Although this is often feasible for embryos, the difficulty of immobilizing typically motile juvenile and adult stages remains a persistent obstacle to time-lapse imaging of post-embryonic development. RESULTS: Here we describe a new method for long-duration time-lapse imaging of adults of the small freshwater annelid Pristina leidyi and use this method to investigate its regenerative processes. Specimens are immobilized with tetrodotoxin, resulting in irreversible paralysis yet apparently normal regeneration, and mounted in agarose surrounded by culture water or halocarbon oil, to prevent dehydration but allowing gas exchange. Using this method, worms can be imaged continuously and at high spatial-temporal resolution for up to 5 days, spanning the entire regeneration process. We performed a fine-scale analysis of regeneration growth rate and characterized cell migration dynamics during early regeneration. Our studies reveal the migration of several putative cell types, including one strongly resembling published descriptions of annelid neoblasts, a cell type suggested to be migratory based on "still-shot" studies and long hypothesized to be linked to regenerative success in annelids. CONCLUSIONS: Combining neurotoxin-based paralysis, live mounting techniques and a starvation-tolerant study system has allowed us to obtain the most extensive high-resolution longitudinal recordings of full anterior and posterior regeneration in an invertebrate, and to detect and characterize several cell types undergoing extensive migration during this process. We expect the tetrodotoxin paralysis and time-lapse imaging methods presented here to be broadly useful in studying other animals and of particular value for studying post-embryonic development.


Assuntos
Movimento Celular , Oligoquetos/citologia , Oligoquetos/fisiologia , Regeneração/fisiologia , Imagem com Lapso de Tempo/métodos , Animais , Movimento Celular/efeitos dos fármacos , Imobilização , Oligoquetos/crescimento & desenvolvimento , Regeneração/efeitos dos fármacos , Especificidade da Espécie , Tetrodotoxina/farmacologia
19.
Front Zool ; 12: 8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25960761

RESUMO

INTRODUCTION: An important goal for understanding how animals have evolved is to reconstruct the ancestral features and evolution of the nervous system. Many inferences about nervous system evolution are weak because of sparse taxonomic sampling and deep phylogenetic distances among species compared. Increasing sampling within clades can strengthen inferences by revealing which features are conserved and which are variable within them. Among the Annelida, the segmented worms, the Clitellata are typically considered as having a largely conserved neural architecture, though this view is based on limited sampling. RESULTS: To gain better understanding of nervous system evolution within Clitellata, we used immunohistochemistry and confocal laser scanning microscopy to describe the nervous system architecture of 12 species of the basally branching family Naididae. Although we found considerable similarity in the nervous system architecture of naidids and that of other clitellate groups, our study identified a number of features that are variable within this family, including some that are variable even among relatively closely related species. Variable features include the position of the brain, the number of ciliary sense organs, the presence of septate ventral nerve cord ganglia, the distribution of serotonergic cells in the brain and ventral ganglia, and the number of peripheral segmental nerves. CONCLUSIONS: Our analysis of patterns of serotonin immunoreactive perikarya in the central nervous system indicates that segmental units are not structurally homogeneous, and preliminary homology assessments suggest that whole sets of serotonin immunoreactive cells have been gained and lost across the Clitellata. We also found that the relative position of neuroectodermal and mesodermal segmental components is surprisingly evolutionarily labile; in turn, this revealed that scoring segmental nerves by their position relative to segmental ganglia rather than to segmental septa clarifies their homologies across Annelida. We conclude that fine taxonomic sampling in comparative studies aimed at elucidating the evolution of morphological diversity is fundamental for proper assessment of trait variability.

20.
Int J Dev Biol ; 58(6-8): 623-34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25690976

RESUMO

Animals differ markedly in their ability to regenerate, yet still little is known about how regeneration evolves. In recent years, important advances have been made in our understanding of animal phylogeny and these provide new insights into the phylogenetic distribution of regeneration. The developmental basis of regeneration is also being investigated in an increasing number of groups, allowing commonalities and differences across groups to become evident. Here, we focus on regeneration in the Spiralia, a group that includes several champions of animal regeneration, as well as many groups with more limited abilities. We review the phylogenetic distribution and developmental processes of regeneration in four major spiralian groups: annelids, nemerteans, platyhelminths, and molluscs. Although comparative data are still limited, this review highlights phylogenetic and developmental patterns that are emerging regarding regeneration in spiralians and identifies important avenues for future research.


Assuntos
Anelídeos/crescimento & desenvolvimento , Moluscos/crescimento & desenvolvimento , Platelmintos/crescimento & desenvolvimento , Regeneração/fisiologia , Animais , Anelídeos/embriologia , Evolução Biológica , Moluscos/embriologia , Filogenia , Platelmintos/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...