Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Physiol Educ ; 48(3): 512-517, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38721651

RESUMO

Internationalization in higher education is essential, and although active learning methodologies are increasing and allow students to develop transversal skills, most still have a very local scope. In this context, the Collaborative Online International Learning (COIL) methodology is an interesting approach to benefit the students' development. It consists of an online program that involves creating multicultural teams to develop a specific learning project. Although this methodology is expanding, its use in physiology is still scarce. This paper aims to show an example of applying COIL methodology in physiology topics to enhance higher-education students' innovation and business skills. Our example project developed a sports-assessment service concept focused on physiology and biomechanics assessments. The program involved teams from Brazil, Germany, and Spain, comprising undergraduate and master students. Over 7 weeks, these teams, mentored by professors and researchers, engaged in workshops covering COIL methodology, business model design, executive summary planning, economic analyses, and communication techniques. Key outcomes included learning new concepts, developing soft skills, building confidence in innovative solution proposals, and experiencing diverse cultures. Challenges faced were language barriers, scheduling, task complexity, and logistical issues. This experience confirms the effectiveness of incorporating programs using COIL methodology into educational curriculums. Doing so exposes physiology students to innovation, entrepreneurship, and business creation while strengthening their professional connections and opening up postgraduation opportunities.NEW & NOTEWORTHY Although the Collaborative Online International Learning (COIL) methodology is expanding, its use in physiology is still scarce. Our example COIL project of 7 weeks developed a sports-assessment service concept focused on physiology and biomechanics assessments. The program involved teams from Brazil, Germany, and Spain, comprising undergraduate and master's students. Students perceived extracurricular activities in this format as beneficial. Coaches also expressed positive views about such initiatives, noting benefits for students and their development.


Assuntos
Fisiologia , Humanos , Fisiologia/educação , Educação a Distância/métodos , Internacionalidade , Currículo , Comportamento Cooperativo
2.
Sensors (Basel) ; 23(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687795

RESUMO

This paper introduces a novel approach to addressing the challenge of accurately timing short distance runs, a critical aspect in the assessment of athletic performance. Electronic photoelectric barriers, although recognized for their dependability and accuracy, have remained largely inaccessible to non-professional athletes and smaller sport clubs due to their high costs. A comprehensive review of existing timing systems reveals that claimed accuracies beyond 30 ms lack experimental validation across most available systems. To bridge this gap, a mobile, camera-based timing system is proposed, capitalizing on consumer-grade electronics and smartphones to provide an affordable and easily accessible alternative. By leveraging readily available hardware components, the construction of the proposed system is detailed, ensuring its cost-effectiveness and simplicity. Experiments involving track and field athletes demonstrate the proficiency of the proposed system in accurately timing short distance sprints. Comparative assessments against a professional photoelectric cells timing system reveal a remarkable accuracy of 62 ms, firmly establishing the reliability and effectiveness of the proposed system. This finding places the camera-based approach on par with existing commercial systems, thereby offering non-professional athletes and smaller sport clubs an affordable means to achieve accurate timing. In an effort to foster further research and development, open access to the device's schematics and software is provided. This accessibility encourages collaboration and innovation in the pursuit of enhanced performance assessment tools for athletes.


Assuntos
Atletas , Desempenho Atlético , Humanos , Reprodutibilidade dos Testes , Eletrônica , Smartphone
3.
Comput Methods Biomech Biomed Engin ; 20(14): 1502-1511, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28948846

RESUMO

Increasingly, inertial sensors are being used for running analyses. The aim of this study was to systematically investigate the influence of inertial sensor sampling frequencies (SF) on the accuracy of kinematic, spatio-temporal, and kinetic parameters. We hypothesized that running analyses at lower SF result in less signal information and therefore the inability to sufficiently interpret measurement data. Twenty-one subjects participated in this study. Rearfoot strikers ran on an indoor running track at a velocity of 3.5 ± 0.1 ms-1. A uniaxial accelerometer was attached at the tibia and an inertial measurement unit was mounted at the heel of the right shoe. All sensors were synchronized at the start and data was measured with 1000 Hz (reference SF). Datasets were reduced to 500, 333, 250, 200, and 100 Hz in post-processing. The results of this study showed that a minimum SF of 500 Hz should be used to accurately measure kinetic parameters (e.g. peak heel acceleration). In contrast, stride length showed accurate results even at 333 Hz. 200 Hz were required to calculate parameters accurately for peak tibial acceleration, stride duration, and all kinematic measurements. The information from this study is necessary to correctly interpret measurement data of existing investigations and to plan future studies.


Assuntos
Pé/fisiologia , Fisiologia/instrumentação , Corrida/fisiologia , Aceleração , Adulto , Fenômenos Biomecânicos , Intervalos de Confiança , Humanos , Cinética , Masculino , Fatores de Tempo
4.
Gait Posture ; 46: 1-4, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27131168

RESUMO

Clinical decisions based on gait data obtained by optoelectronic motion capturing require profound knowledge about the repeatability of the used measurement systems and methods. The purpose of this study was to evaluate the effects of inconsistent anthropometric measurements on joint kinematics calculated with the Plug-in Gait model. Therefore, a sensitivity study was conducted to ascertain how joint kinematics output is affected to different anthropometric data input. One previously examined gait session of a healthy male subject and his anthropometric data that were assessed by two experienced examiners served as a basis for this analytical evaluation. This sensitivity study yielded a maximum difference in joint kinematics by the two sets of anthropometrics of up to 1.2°. In conclusion, this study has shown that the reliability of subjects' anthropometrics assessed by experienced examiners has no considerable effects on joint kinematics.


Assuntos
Antropometria/métodos , Marcha/fisiologia , Amplitude de Movimento Articular/fisiologia , Fenômenos Biomecânicos , Humanos , Masculino , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA