Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Mech Behav Biomed Mater ; 118: 104399, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662741

RESUMO

The mechanical properties of cellulose nanocrystal (CNC) films critically depend on many microstructural parameters such as fiber length distribution (FLD), fiber orientation distribution (FOD), and the strength of the interactions between the fibers. In this paper, we use our coarse-grained molecular model of CNC to study the effect of length and orientation distribution and attractions between CNCs on the mechanical properties of neat CNCs. The effect of misalignment of a 2D staggered structure of CNC with respect to the loading direction was studied with simulations and analytical solutions and then verified with experiments. To understand the effect of FLD and FOD on the mechanical performance, various 3D microstructures representing different case studies such as highly aligned, randomly distributed, short length CNCs and long length CNCs were generated and simulated. According to the misalignment study, three different failure modes: sliding mode, mixed mode, and normal mode were defined. Also, comparing the effects of FOD, FLD, and CNC interaction strength, shows that the adhesion strength is the only parameter that can significantly improve the mechanical properties, regardless of loading direction or FOD of CNCs.


Assuntos
Celulose , Nanopartículas
4.
Nature ; 586(7830): 543-548, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33087910

RESUMO

Joining dissimilar materials such as plastics and metals in engineered structures remains a challenge1. Mechanical fastening, conventional welding and adhesive bonding are examples of techniques currently used for this purpose, but each of these methods presents its own set of problems2 such as formation of stress concentrators or degradation under environmental exposure, reducing strength and causing premature failure. In the biological tissues of numerous animal and plant species, efficient strategies have evolved to synthesize, construct and integrate composites that have exceptional mechanical properties3. One impressive example is found in the exoskeletal forewings (elytra) of the diabolical ironclad beetle, Phloeodes diabolicus. Lacking the ability to fly away from predators, this desert insect has extremely impact-resistant and crush-resistant elytra, produced by complex and graded interfaces. Here, using advanced microscopy, spectroscopy and in situ mechanical testing, we identify multiscale architectural designs within the exoskeleton of this beetle, and examine the resulting mechanical response and toughening mechanisms. We highlight a series of interdigitated sutures, the ellipsoidal geometry and laminated microstructure of which provide mechanical interlocking and toughening at critical strains, while avoiding catastrophic failure. These observations could be applied in developing tough, impact- and crush-resistant materials for joining dissimilar materials. We demonstrate this by creating interlocking sutures from biomimetic composites that show a considerable increase in toughness compared with a frequently used engineering joint.


Assuntos
Fenômenos Biomecânicos/fisiologia , Besouros/anatomia & histologia , Besouros/fisiologia , Força Compressiva , Animais , Biomimética , Feminino , Masculino , Estresse Mecânico
5.
J Mech Behav Biomed Mater ; 110: 103914, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32957213

RESUMO

Naturally occurring biological materials with stiff fibers embedded in a ductile matrix are commonly known to achieve excellent balance between stiffness, strength and ductility. In particular, biological composite materials with helicoidal architecture have been shown to exhibit enhanced damage tolerance and increased impact energy absorption. However, the role of fiber reorientation inside the flexible matrix of helicoid composites on their mechanical behaviors have not yet been extensively investigated. In the present work, we introduce a Discontinuous Fiber Helicoid (DFH) composite inspired by both the helicoid microstructure in the cuticle of mantis shrimp and the nacreous architecture of the red abalone shell. We employ 3D printed specimens, analytical models and finite element models to analyze and quantify in-plane fiber reorientation in helicoid architectures with different geometrical features. We also introduce additional architectures, i.e., single unidirectional lamina and mono-balanced architectures, for comparison purposes. Compared with associated mono-balanced architectures, helicoid architectures exhibit less fiber reorientation values and lower values of strain stiffening. The explanation for this difference is addressed in terms of the measured in-plane deformation, due to uniaxial tensile of the laminae, correlated to lamina misorientation with respect to the loading direction and lay-up sequence.


Assuntos
Nácar , Materiais Dentários , Resistência à Tração
6.
J Mech Behav Biomed Mater ; 111: 103991, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32823075

RESUMO

Chitons are herbivorous invertebrates that use rows of ultrahard magnetite-based teeth connected to a flexible belt (radula) to rasp away algal deposits growing on and within rocky outcrops along coastlines around the world. Each tooth is attached to the radula by an organic structure (stylus) that provides mechanical support during feeding. However, the underlying structures within the stylus, and their subsequent function within the chiton have yet to be investigated. Here, we investigate the macrostructural architecture, the regional material and elemental distribution and subsequent nano-mechanical properties of the stylus from the Northern Pacific dwelling Cryptochiton stelleri. Using a combination of µ-CT imaging, optical and electron microscopy, as well as elemental analysis, we reveal that the stylus is a highly contoured tube, mainly composed of alpha-chitin fibers, with a complex density distribution. Nanoindentation reveals regiospecific and graded mechanical properties that can be correlated with both the elemental composition and material distribution. Finite element modeling shows that the unique macroscale architecture, material distribution and elemental gradients have been optimized to preserve the structural stability of this flexible, yet robust functionally-graded fiber-reinforced composite tube, providing effective function during rasping. Understanding these complex fiber-based structures offers promising blueprints for lightweight, multifunctional and integrated materials.


Assuntos
Poliplacóforos , Dente , Animais , Óxido Ferroso-Férrico , Microscopia Eletrônica
7.
Nat Mater ; 19(11): 1236-1243, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32807923

RESUMO

Nature utilizes the available resources to construct lightweight, strong and tough materials under constrained environmental conditions. The impact surface of the fast-striking dactyl club from the mantis shrimp is an example of one such composite material; the shrimp has evolved the capability to localize damage and avoid catastrophic failure from high-speed collisions during its feeding activities. Here we report that the dactyl club of mantis shrimps contains an impact-resistant coating composed of densely packed (about 88 per cent by volume) ~65-nm bicontinuous nanoparticles of hydroxyapatite integrated within an organic matrix. These mesocrystalline hydroxyapatite nanoparticles are assembled from small, highly aligned nanocrystals. Under impacts of high strain rates (around 104 s-1), particles rotate and translate, whereas the nanocrystalline networks fracture at low-angle grain boundaries, form dislocations and undergo amorphization. The interpenetrating organic network provides additional toughening, as well as substantial damping, with a loss coefficient of around 0.02. An unusual combination of stiffness and damping is therefore achieved, outperforming many engineered materials.


Assuntos
Biomimética , Crustáceos , Nanopartículas/química , Exoesqueleto , Animais , Crustáceos/anatomia & histologia , Estresse Mecânico
9.
Proc Natl Acad Sci U S A ; 116(49): 24457-24462, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740616

RESUMO

Microarchitectured materials achieve superior mechanical properties through geometry rather than composition. Although ultralightweight microarchitectured materials can have high stiffness and strength, application to durable devices will require sufficient service life under cyclic loading. Naturally occurring materials provide useful models for high-performance materials. Here, we show that in cancellous bone, a naturally occurring lightweight microarchitectured material, resistance to fatigue failure is sensitive to a microarchitectural trait that has negligible effects on stiffness and strength-the proportion of material oriented transverse to applied loads. Using models generated with additive manufacturing, we show that small increases in the thickness of elements oriented transverse to loading can increase fatigue life by 10 to 100 times, far exceeding what is expected from the associated change in density. Transversely oriented struts enhance resistance to fatigue by acting as sacrificial elements. We show that this mechanism is also present in synthetic microlattice structures, where fatigue life can be altered by 5 to 9 times with only negligible changes in density and stiffness. The effects of microstructure on fatigue life in cancellous bone and lattice structures are described empirically by normalizing stress in traditional stress vs. life (S-N) curves by √ψ, where ψ is the proportion of material oriented transverse to load. The mechanical performance of cancellous bone and microarchitectured materials is enhanced by aligning structural elements with expected loading; our findings demonstrate that this strategy comes at the cost of reduced fatigue life, with consequences to the use of microarchitectured materials in durable devices and to human health in the context of osteoporosis.


Assuntos
Materiais Biomiméticos/química , Fadiga , Vértebras Torácicas/química , Vértebras Torácicas/fisiologia , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Força Compressiva , Módulo de Elasticidade , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Metacrilatos , Pessoa de Meia-Idade , Modelos Teóricos , Poliuretanos , Porosidade , Resistência à Tração , Vértebras Torácicas/diagnóstico por imagem , Suporte de Carga , Microtomografia por Raio-X
10.
Sci Rep ; 9(1): 12581, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467381

RESUMO

Phase Transforming Cellular Materials (PXCMs) are periodic cellular materials whose unit cells exhibit multiple stable or meta-stable configurations. Transitions between the various (meta-) stable configurations at the unit cell level enable these materials to exhibit reusable solid state energy dissipation. This energy dissipation arises from the storage and non-equilibrium release of strain energy accompanying the limit point traversals underlying these transitions. The material deformation is fully recoverable, and thus the material can be reused to absorb and dissipate energy multiple times. In this work, we present two designs for functionally two-dimensional PXCMs: the S-type with four axes of reflectional symmetry based on a square motif and, the T-type with six axes of symmetry based on a triangular motif. We employ experiments and simulations to understand the various mechanisms that are triggered under multiaxial loading conditions. Our numerical and experimental results indicate that these materials exhibit similar solid state energy dissipation for loads applied along the various axes of reflectional symmetry of the material. The specific energy dissipation capacity of the T-type is slightly greater and less sensitive to the loading direction than the S-type under the most of loading directions. However, both types of material are shown to be very effective in dissipating energy.

11.
Adv Mater ; 31(43): e1901561, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31268207

RESUMO

Biological materials found in Nature such as nacre and bone are well recognized as light-weight, strong, and tough structural materials. The remarkable toughness and damage tolerance of such biological materials are conferred through hierarchical assembly of their multiscale (i.e., atomic- to macroscale) architectures and components. Herein, the toughening mechanisms of different organisms at multilength scales are identified and summarized: macromolecular deformation, chemical bond breakage, and biomineral crystal imperfections at the atomic scale; biopolymer fibril reconfiguration/deformation and biomineral nanoparticle/nanoplatelet/nanorod translation, and crack reorientation at the nanoscale; crack deflection and twisting by characteristic features such as tubules and lamellae at the microscale; and structure and morphology optimization at the macroscale. In addition, the actual loading conditions of the natural organisms are different, leading to energy dissipation occurring at different time scales. These toughening mechanisms are further illustrated by comparing the experimental results with computational modeling. Modeling methods at different length and time scales are reviewed. Examples of biomimetic designs that realize the multiscale toughening mechanisms in engineering materials are introduced. Indeed, there is still plenty of room mimicking the strong and tough biological designs at the multilength and time scale in Nature.


Assuntos
Materiais Biomiméticos , Fenômenos Mecânicos , Animais , Materiais Biomiméticos/química , Biopolímeros/química , Humanos
12.
J Mech Behav Biomed Mater ; 96: 244-260, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31075746

RESUMO

Geometrically patterned interfaces seem to be a common motif in Nature. In particular, geometry plays an important role in increasing the strength, toughness and damage tolerance among different species. Here, we investigate the role of the shape of the opening crack behind the crack tip as the crack propagates along the interface. In particular, we studied the shape of the interface behind the crack tip for different amplitude-to-wavelength aspect ratios with two analytical models and compared with finite element simulations through the J-integral. Additionally, we explore the role of material length scale by investigating the relationship between the geometrical characteristic lengths and the emerging material length scale using a finite element-based cohesive zone model. The results suggest that geometrical toughening is influenced by a size effect, but it is bounded between two extreme conditions.


Assuntos
Biomimética , Análise de Elementos Finitos , Fenômenos Mecânicos , Modelos Teóricos , Estresse Mecânico , Suporte de Carga
13.
Sci Rep ; 9(1): 5757, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962474

RESUMO

The measurement of local mechanical properties of living cells by nano/micro indentation relies on the foundational assumption of locally isotropic cellular deformation. As a consequence of assumed isotropy, the cell membrane and underlying cytoskeleton are expected to locally deform axisymmetrically when indented by a spherical tip. Here, we directly observe the local geometry of deformation of membrane and cytoskeleton of different living adherent cells during nanoindentation with the integrated Atomic Force (AFM) and spinning disk confocal (SDC) microscope. We show that the presence of the perinuclear actin cap (apical stress fibers), such as those encountered in cells subject to physiological forces, causes a strongly non-axisymmetric membrane deformation during indentation reflecting local mechanical anisotropy. In contrast, axisymmetric membrane deformation reflecting mechanical isotropy was found in cells without actin cap: cancerous cells MDA-MB-231, which naturally lack the actin cap, and NIH 3T3 cells in which the actin cap is disrupted by latrunculin A. Careful studies were undertaken to quantify the effect of the live cell fluorescent stains on the measured mechanical properties. Using finite element computations and the numerical analysis, we explored the capability of one of the simplest anisotropic models - transverse isotropy model with three local mechanical parameters (longitudinal and transverse modulus and planar shear modulus) - to capture the observed non-axisymmetric deformation. These results help identifying which cell types are likely to exhibit non-isotropic properties, how to measure and quantify cellular deformation during AFM indentation using live cell stains and SDC, and suggest modelling guidelines to recover quantitative estimates of the mechanical properties of living cells.


Assuntos
Membrana Celular/ultraestrutura , Citoesqueleto/ultraestrutura , Microscopia de Força Atômica/métodos , Animais , Anisotropia , Linhagem Celular Tumoral , Simulação por Computador , Análise de Elementos Finitos , Humanos , Fenômenos Mecânicos , Camundongos , Células NIH 3T3
14.
Adv Mater ; 30(43): e1802123, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30159935

RESUMO

There is an increasing interest in hierarchical design and additive manufacturing (AM) of cement-based materials. However, the brittle behavior of these materials and the presence of interfaces from the AM process currently present a major challenge. Contrary to the commonly adopted approach in AM of cement-based materials to eliminate the interfaces in 3D-printed hardened cement paste (hcp) elements, this work focuses on harnessing the heterogeneous interfaces by employing novel architectures (based on bioinspired Bouligand structures). These architectures are found to generate unique damage mechanisms, which allow inherently brittle hcp materials to attain flaw-tolerant properties and novel performance characteristics. It is hypothesized that combining heterogeneous interfaces with carefully designed architectures promotes such damage mechanisms as, among others, interfacial microcracking and crack twisting. This, in turn, leads to damage delocalization in brittle 3D-printed architectured hcp and therefore results in quasi-brittle behavior, enhanced fracture and damage tolerance, and unique load-displacement response, all without sacrificing strength. It is further found that in addition to delocalization of the cracks, the Bouligand architectures can also enhance work of failure and inelastic deflection of the architectured hcp elements by over 50% when compared to traditionally cast elements from the same materials.


Assuntos
Impressão Tridimensional , Teste de Materiais , Cimentos de Resina
15.
Adv Mater ; 30(9)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29336499

RESUMO

Ecological pressures and varied feeding behaviors in a multitude of organisms have necessitated the drive for adaptation. One such change is seen in the feeding appendages of stomatopods, a group of highly predatory marine crustaceans. Stomatopods include "spearers," who ambush and snare soft bodied prey, and "smashers," who bludgeon hard-shelled prey with a heavily mineralized club. The regional substructural complexity of the stomatopod dactyl club from the smashing predator Odontodactylus scyllarus represents a model system in the study of impact tolerant biominerals. The club consists of a highly mineralized impact region, a characteristic Bouligand architecture (common to arthropods), and a unique section of the club, the striated region, composed of highly aligned sheets of mineralized fibers. Detailed ultrastructural investigations of the striated region within O. scyllarus and a related species of spearing stomatopod, Lysiosquillina maculate show consistent organization of mineral and organic, but distinct differences in macro-scale architecture. Evidence is provided for the function and substructural exaptation of the striated region, which facilitated redeployment of a raptorial feeding appendage as a biological hammer. Moreover, given the need to accelerate underwater and "grab" or "smash" their prey, the spearer and smasher appendages are specifically designed with a significantly reduced drag force.

16.
J Mech Behav Biomed Mater ; 76: 38-57, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28629739

RESUMO

The Bouligand structure, which is found in many biological materials, is a hierarchical architecture that features uniaxial fiber layers assembled periodically into a helicoidal pattern. Many studies have highlighted the high damage-resistant performance of natural and biomimetic Bouligand structures. One particular species that utilizes the Bouligand structure to achieve outstanding mechanical performance is the smashing Mantis Shrimp, Odontodactylus Scyllarus (or stomatopod). The mantis shrimp generates high speed, high acceleration blows using its raptorial appendage to defeat highly armored preys. The load-bearing part of this appendage, the dactyl club, contains an interior region [16] that consists of a Bouligand structure. This region is capable of developing a significant amount of nested twisting microcracks without exhibiting catastrophic failure. The development and propagation of these microcracks are a source of energy dissipation and stress relaxation that ultimately contributes to the remarkable damage tolerance properties of the dactyl club. We develop a theoretical model to provide additional insights into the local stress intensity factors at the crack front of twisting cracks formed within the Bouligand structure. Our results reveal that changes in the local fracture mode at the crack front leads to a reduction of the local strain energy release rate, hence, increasing the necessary applied energy release rate to propagate the crack, which is quantified by the local toughening factor. Ancillary 3D simulations of the asymptotic crack front field were carried out using a J-integral to validate the theoretical values of the energy release rate and the local stress intensity factors.


Assuntos
Crustáceos/anatomia & histologia , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos
17.
J Mech Behav Biomed Mater ; 76: 58-68, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28602753

RESUMO

Gastropods shells have evolved to resist the threat of increasingly stronger predators that smash, peal, and crush their shells. Their shells are most commonly constructed from a crossed lamellar microstructure, which consists of an exquisitely architected arrangement of aragonitic mineral and organic encompassing at least four orders of hierarchy. It is this careful control of mineral and organic placement within the entire crossed lamellar structure that yields a four-order of magnitude increase in fracture toughness versus abiotic aragonite. We investigated the effect of differing microstructural orientations on their influence of inter-3rd order lamellar fracture behavior using nanoindentation from the inner layer of the Strombus gigas shell. We observed a significant influence of lamella (plank) orientation and nanoindenter probe on the mechanical properties. The ±45° arrangement of mineral planks found within biological crossed lamellar composites provides a significant enhancement of isotropic resistance to penetration by sharp objects such as jaws and claws. In addition, the ±45° arrangement is able to resist higher loads before failure. This combination of features from the crossed lamellar architecture helped enable species with this shell structure to survive predation for hundreds of millions of years and will also help provide insights into designs of future generations of composites.


Assuntos
Gastrópodes/anatomia & histologia , Teste de Materiais , Fenômenos Mecânicos , Nanotecnologia , Exoesqueleto/anatomia & histologia , Animais , Biomimética , Dureza , Impressão Tridimensional
18.
Mater Struct ; 502017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28082830

RESUMO

This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to -35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained.

19.
Adv Mater ; 28(32): 6835-44, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27238289

RESUMO

A fibrous herringbone-modified helicoidal architecture is identified within the exocuticle of an impact-resistant crustacean appendage. This previously unreported composite microstructure, which features highly textured apatite mineral templated by an alpha-chitin matrix, provides enhanced stress redistribution and energy absorption over the traditional helicoidal design under compressive loading. Nanoscale toughening mechanisms are also identified using high-load nanoindentation and in situ transmission electron microscopy picoindentation.

20.
Nature ; 533(7603): 369-73, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27135928

RESUMO

Two-dimensional (2D) crystalline materials possess unique structural, mechanical and electronic properties that make them highly attractive in many applications. Although there have been advances in preparing 2D materials that consist of one or a few atomic or molecular layers, bottom-up assembly of 2D crystalline materials remains a challenge and an active area of development. More challenging is the design of dynamic 2D lattices that can undergo large-scale motions without loss of crystallinity. Dynamic behaviour in porous three-dimensional (3D) crystalline solids has been exploited for stimuli-responsive functions and adaptive behaviour. As in such 3D materials, integrating flexibility and adaptiveness into crystalline 2D lattices would greatly broaden the functional scope of 2D materials. Here we report the self-assembly of unsupported, 2D protein lattices with precise spatial arrangements and patterns using a readily accessible design strategy. Three single- or double-point mutants of the C4-symmetric protein RhuA were designed to assemble via different modes of intermolecular interactions (single-disulfide, double-disulfide and metal-coordination) into crystalline 2D arrays. Owing to the flexibility of the single-disulfide interactions, the lattices of one of the variants ((C98)RhuA) are essentially defect-free and undergo substantial, but fully correlated, changes in molecular arrangement, yielding coherently dynamic 2D molecular lattices. (C98)RhuA lattices display a Poisson's ratio of -1-the lowest thermodynamically possible value for an isotropic material-making them auxetic.


Assuntos
Aldeído Liases/química , Aldeído Liases/metabolismo , Maleabilidade , Aldeído Liases/genética , Aldeído Liases/ultraestrutura , Cristalização , Dissulfetos/química , Dissulfetos/metabolismo , Escherichia coli/química , Metais/química , Metais/farmacologia , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Maleabilidade/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Rotação , Estresse Mecânico , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...