Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38472727

RESUMO

The utilization of 3D printing- digital light processing (DLP) technique, for the direct fabrication of microneedles encounters the problem of drug solubility in printing resin, especially if it is predominantly composed of water. The possible solution how to ensure ideal belonging of drug and water-based printing resin is its pre-formulation in nanosuspension such as nanocrystals. This study investigates the feasibility of this approach on a resin containing nanocrystals of imiquimod (IMQ), an active used in (pre)cancerous skin conditions, well known for its problematic solubility and bioavailability. The resin blend of polyethylene glycol diacrylate and N-vinylpyrrolidone, and lithium phenyl-2,4,6-trimethylbenzoylphosphinate as a photoinitiator, was used, mixed with IMQ nanocrystals in water. The final microneedle-patches had 36 cylindrical microneedles arranged in a square grid, measuring approximately 600 µm in height and 500 µm in diameter. They contained 5wt% IMQ, which is equivalent to a commercially available cream. The homogeneity of IMQ distribution in the matrix was higher for nanocrystals compared to usual crystalline form. The release of IMQ from the patches was determined ex vivo in natural skin and revealed a 48% increase in efficacy for nanocrystal formulations compared to the crystalline form of IMQ.

2.
Int J Pharm ; 648: 123577, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37931726

RESUMO

Imiquimod (IMQ) is an immunostimulating agent used in the treatment of basal cell carcinoma and actinic keratosis. Due to its low solubility and poor skin bioavailability, the dermal formulation of IMQ remains challenging. In analogy to tyre compounds used in Formula 1 racing, we compare four types of nanosystems belonging to three groups: (i) "hard" nanoparticles in the form of IMQ nanocrystals, (ii) "intermediate" nanoparticles in the form of liposomes and lipid nanocapsules, and (iii) "soft" nanoparticles in the form of a nanoemulsion based on oleic acid. The nanoemulsion and nanocrystals were able to incorporate the highest amount of IMQ (at least 2 wt%) compared to liposomes (0.03 wt%) and lipid nanocapsules (0.08 wt%). Regarding size, liposomes, and lipid nanocapsules were rather small (around 40 nm) whereas nanocrystals and nanoemulsion were larger (around 200 nm). All developed nanoformulations showed high efficiency to deliver IMQ into the skin tissue without undesirable subsequent permeation through the skin to acceptor. Especially, the 2 wt% IMQ nanoemulsion accumulated 129 µg/g IMQ in the skin, compared to 34 µg/g of a 5 wt% commercial cream. The effects of the respective nanoparticulate systems were discussed with respect to their possible diffusion kinetics (Brownian motion vs. settling) in the aqueous phase.


Assuntos
Lipossomos , Nanocápsulas , Imiquimode/química , Lipossomos/farmacologia , Pele/metabolismo , Lipídeos/farmacologia
3.
Pharmaceutics ; 15(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36839836

RESUMO

Owing to their complicated pathophysiology, the treatment of skin diseases necessitates a complex approach. Conventional treatment using topical corticosteroids often results in low effectiveness and the incidence of local or even systemic side effects. Nanoformulation of potent anti-inflammatory drugs has been selected as an optimal strategy for enhanced topical delivery of corticosteroids. In order to assess the efficiency of various nanoformulations, we formulated hydrocortisone (HC) and hydrocortisone-17-butyrate (HCB) into three different systems: lipid nanocapsules (LNC), polymeric nanoparticles (PNP), and ethosomes (ETZ). The systems were characterized using dynamic light scattering for their particle size and uniformity and the morphology of nanoparticles was observed by transmission electron microscopy. The nanosystems were tested using ex vivo full thickness porcine and human skin for the delivery of HC and HCB. The skin penetration was observed by confocal microscopy of fluorescently labelled nanosystems. ETZ were proposed as the most effective delivery system for both transdermal and dermal drug targeting but were also found to have a profound effect on the skin barrier with limited restoration. LNC and PNP were found to have significant effects in the dermal delivery of the actives with only minimal transdermal penetration, especially in case of HCB administration.

4.
ACS Omega ; 8(1): 422-435, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643519

RESUMO

Ceramides belong to sphingolipids, an important group of cellular and extracellular lipids. Their physiological functions range from cell signaling to participation in the formation of barriers against water evaporation. In the skin, they are essential for the permeability barrier, together with free fatty acids and cholesterol. We examined the periodical structure and permeability of lipid films composed of ceramides (Cer; namely, N-lignoceroyl 6-hydroxysphingosine, CerNH24, and N-lignoceroyl sphingosine, CerNS24), lignoceric acid (LIG; 24:0), and cholesterol (Chol). X-ray diffraction experiments showed that the CerNH24-based samples form either a short lamellar phase (SLP, d ∼ 5.4 nm) or a medium lamellar phase (MLP, d = 10.63-10.78 nm) depending on the annealing conditions. The proposed molecular arrangement of the MLP based on extended Cer molecules also agreed with the relative neutron scattering length density profiles obtained from the neutron diffraction data. The presence of MLP increased the lipid film permeability to the lipophilic model permeant (indomethacin) relative to the CerNS24-based control samples and the samples that had the same lipid composition but formed an SLP. Thus, the arrangement of lipids in various nanostructures is responsive to external conditions during sample preparation. This polymorphic behavior directly affects the barrier properties, which could also be (patho)physiologically relevant.

5.
Int J Pharm ; 628: 122264, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36209979

RESUMO

The transdermal application of actives offers numerous advantages over other conventional routes. Namely, a stable level of drugs in the bloodstream and reduced side effects are the argument for topical administration. Unfortunately, the exceptional skin barrier and unsuitable physico-chemical properties of drugs are the limiting factors for the transdermal passage. It is possible to overcome this by incorporating the drug into nano-carriers to enhance its permeation through the skin barrier. For this purpose, we prepared lipid nanocapsules (LNCs) to modulate skin passage of three pharmaceutically important drugs - indomethacin (IND), diclofenac sodium (DF) and caffeine (CF). We present a stable system prepared by the phase inversion temperature method with particle size under 100 nm and PDI < 0.1 with great encapsulation efficiency for indomethacin and diclofenac. By FTIR it was possible to confirm (for IND and DF) or disprove (in case of CF) the incorporation of a drug into the LNCs. By ex vivo permeation experiments on porcine skin, we confirmed the superior effect of the LNCs on the APIs skin passage. The drug permeated through the skin with higher intensity when delivered from LNCs compared to other standard formulations. We show that lipid nanocapsules play an important role in enhanced topical application of actives.


Assuntos
Nanocápsulas , Nanocápsulas/química , Portadores de Fármacos/química , Administração Cutânea , Diclofenaco , Tamanho da Partícula , Indometacina , Lipídeos/química
6.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35631342

RESUMO

Imiquimod (IMQ) is a potent immune response modifier with antiviral and antitumor properties. IMQ's low aqueous solubility and unsatisfactory cutaneous permeability limit its formulation into effective dosage forms. This work aimed to develop IMQ-loaded microemulsions (MEs) based on phospholipids and oleic acid to improve IMQ penetration into the epidermis. A pseudo-ternary phase diagram was constructed, and the microstructure of the formulations was examined by measuring the conductivity values. Selected MEs were characterized and studied for their ability to deliver IMQ into and through ex vivo human skin. ME1 with 1% IMQ (bicontinuous ME with Bingham rheology) delivered similar IMQ quantities to the human epidermis ex vivo as the commercial product while having a 5-fold lower IMQ dose. IMQ was not detected in the acceptor phase after the permeation experiment, suggesting a lower systemic absorption risk than the established product. Infrared spectroscopy of the stratum corneum revealed less ordered and less tightly packed lipids after ME1 application. The ME1-induced barrier disruption recovered within less than 5 h after the formulation removal, as detected by transepidermal water loss measurements. In conclusion, our findings demonstrate that phospholipid and oleic acid-based MEs could become a promising alternative for topical IMQ administration.

7.
AAPS PharmSciTech ; 23(1): 21, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907505

RESUMO

Disrupted skin barrier, one of the severe attributes of inflammatory skin diseases, is caused by lower content and pathological changes of lipids in the uppermost skin layer-stratum corneum (SC). Restoring skin barrier with native skin lipids, especially ceramides (Cers), appears to be a promising therapy with minimum side effects. For testing the efficiency of these formulations, suitable in vitro models of the skin with disrupted barriers are needed. For the similarity with the human tissue, our models were based on the pig ear skin. Three different ways of skin barrier disruption were tested and compared: tape stripping, lipid extraction with organic solvents, and barrier disruption by sodium lauryl sulfate. The level of barrier disruption was investigated by permeation studies, and parameters of each method were modified to reach significant changes between the non-disrupted skin and our model. Fourier transform infrared (FTIR) spectroscopy was employed to elucidate the changes of the skin permeability on the molecular scale. Further, the potential of the developed models to be restored by skin barrier repairing agents was evaluated by the same techniques. We observed a significant decrease in permeation characteristics through our in vitro models treated with the lipid mixtures compared to the untreated damaged skin, which implied that the skin barrier was substantially restored. Taken together, the results suggest that our in vitro models are suitable for the screening of potential barrier repairing agents.


Assuntos
Ceramidas , Pele , Animais , Epiderme , Lipídeos , Permeabilidade , Suínos
8.
Pharmaceutics ; 13(4)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800701

RESUMO

Oligonucleotides (OND) represent a promising therapeutic approach. However, their instability and low intestinal permeability hamper oral bioavailability. Well-established for oral delivery, self-emulsifying drug delivery systems (SEDDS) can overcome the weakness of other delivery systems such as long-term instability of nanoparticles or complicated formulation processes. Therefore, the present study aims to prepare SEDDS for delivery of a nonspecific fluorescently labeled OND across the intestinal Caco-2 monolayer. The hydrophobic ion pairing of an OND and a cationic lipid served as an effective hydrophobization method using either dimethyldioctadecylammonium bromide (DDAB) or 1,2-dioleoyl-3-trimethylammonium propane (DOTAP). This strategy allowed a successful loading of OND-cationic lipid complexes into both negatively charged and neutral SEDDS. Subjecting both complex-loaded SEDDS to a nuclease, the negatively charged SEDDS protected about 16% of the complexed OND in contrast to 58% protected by its neutral counterpart. Furthermore, both SEDDS containing permeation-enhancing excipients facilitated delivery of OND across the intestinal Caco-2 cell monolayer. The negatively charged SEDDS showed a more stable permeability profile over 120 min, with a permeability of about 2 × 10-7 cm/s, unlike neutral SEDDS, which displayed an increasing permeability reaching up to 7 × 10-7 cm/s. In conclusion, these novel SEDDS-based formulations provide a promising tool for OND protection and delivery across the Caco-2 cell monolayer.

9.
Nanomaterials (Basel) ; 11(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809764

RESUMO

Macrophages possess an innate ability to scavenge heterogenous objects from the systemic circulation and to regulate inflammatory diseases in various organs via cytokine production. That makes them attractive targets for nanomedicine-based therapeutic approaches to inflammatory diseases. In the present study, we have prepared several different poly(lactic-co-glycolic acid) (PLGA) polymer nanospheres for macrophage-targeted drug delivery using both nanoprecipitation and emulsification solvent evaporation methods. Two experimental linear PLGA polymers with relatively low molar weight, one experimental branched PLGA with unique star-like molecular architecture, and a commercially available PLGA, were used for nanosphere formulation and compared to their macrophage uptake capacity. The nanosphere formulations labelled with loaded fluorescent dye Rhodamine B were further tested in mouse bone marrow-derived macrophages and in hepatocyte cell lines AML-12, HepG2. We found that nanospheres larger than 100 nm prepared using nanoprecipitation significantly enhanced distribution of fluorescent dye selectively into macrophages. No effects of nanospheres on cellular viability were observed. Additionally, no significant proinflammatory effect after macrophage exposure to nanospheres was detected as assessed by a determination of proinflammatory cytokines Il-1ß and Tnfα mRNA. All experimental PLGA nanoformulations surpassed the nanospheres obtained with the commercially available polymer taken as a control in their capacity as macrophage-specific carriers.

10.
J Invest Dermatol ; 141(8): 1915-1921.e4, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33675786

RESUMO

Lipid membrane remodeling belongs to the most fundamental processes in the body. The skin barrier lipids, which are ceramide dominant and highly rigid, must attain an unusual multilamellar nanostructure with long periodicity to restrict water loss and prevent the entry of potentially harmful environmental factors. Our data suggest that the skin acid mantle, apart from regulating enzyme activities and keeping away pathogens, may also be a prerequisite for the multilamellar assembly of the skin barrier lipids. Atomic force microscopy on monolayers composed of synthetic or human stratum corneum lipids showed multilayer formation (approximately 10-nm step height) in an acidic but not in a neutral environment. X-ray diffraction, Fourier transform infrared spectroscopy, and permeability studies showed markedly altered lipid nanostructure and increased water loss at neutral pH compared with that at acidic pH. These findings are consistent with the data on the altered organization of skin lipids and increased transepidermal water loss under conditions such as inadequate skin acidification, for example, in neonates, the elderly, and patients with atopic dermatitis.


Assuntos
Ceramidas/metabolismo , Colesterol/metabolismo , Epiderme/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Perda Insensível de Água , Fatores Etários , Idoso , Ceramidas/química , Colesterol/química , Dermatite Atópica/patologia , Epiderme/química , Epiderme/patologia , Ácidos Graxos , Ácidos Graxos não Esterificados/química , Feminino , Humanos , Concentração de Íons de Hidrogênio , Recém-Nascido , Microscopia de Força Atômica , Permeabilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
Int J Pharm ; 596: 120264, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33486027

RESUMO

Diseases related to a disrupted skin barrier are accompanied by lower levels of ceramides in the stratum corneum (SC) lipid matrix. Delivering ceramides directly into damaged skin is a viable alternative to conventional corticosteroids, but is hindered by their low skin bioavailability and limited nanoformulation ability. Here, we developed stable liposomal systems containing ceramides and other SC lipids, and tested their effectiveness in skin barrier repair. Lipid film hydration and high-pressure homogenization were used to prepare different types of liposomes. To determine the stability, the particle size and polydispersity index were measured. The optimal systems were found to include ceramide 3 and 6, cholesterol and stearic acid, with 10% urea in phosphate-buffered saline as the aqueous phase. The ability of the system to repair chemically-damaged porcine skin was tested. While treatment by a standard lipid suspension reduced the passage of a model permeant only to a limited extent, drug flux through the liposomally-treated skin was much closer to permeation through intact skin. The non-homogenized liposomes were more effective than their homogenized version. These findings were also confirmed by FTIR measurements. This suggests that our approach to liposomal development has considerable potential for the repair of a disrupted skin barrier.


Assuntos
Ceramidas , Lipossomos , Animais , Epiderme , Lipídeos , Pele , Suínos
12.
Pharmaceutics ; 14(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35056959

RESUMO

Transdermal drug delivery is an attractive non-invasive method offering numerous advantages over the conventional routes of administration. The main obstacle to drug transport is, however, the powerful skin barrier that needs to be modulated, for example, by transdermal permeation enhancers. Unfortunately, there are still only a few enhancers showing optimum properties including low toxicity and reversibility of enhancing effects. For this reason, we investigated a series of new N-alkylmorpholines with various side chains as potential enhancers in an in vitro permeation study, using three model permeants (theophylline, indomethacin, diclofenac). Moreover, electrical impedance, transepidermal water loss, cellular toxicity and infrared spectroscopy measurements were applied to assess the effect of enhancers on skin integrity, reversibility, toxicity and enhancers' mode of action, respectively. Our results showed a bell-shaped relationship between the enhancing activity and the hydrocarbon chain length of the N-alkylmorpholines, with the most efficient derivatives having 10-14 carbons for both transdermal and dermal delivery. These structures were even more potent than the unsaturated oleyl derivative. The best results were obtained for indomethacin, where particularly the C10-14 derivatives showed significantly stronger effects than the traditional enhancer Azone. Further experiments revealed reversibility in the enhancing effect, acceptable toxicity and a mode of action based predominantly on interactions with stratum corneum lipids.

13.
Eur J Pharm Sci ; 142: 105139, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31704342

RESUMO

The potential of nanotechnology has been explored throughout fields of medicine and found its application also in immunology. Given the crucial defence role and disseminated character of the immune system, the idea of using its strength in treatment has always been very attractive. Immunomodulation is an optimisation of the immune response both in terms of immunosuppression in autoimmune disorders and immunostimulation in vaccination or cancer immunotherapy. For these purposes, a wide range of nanomaterials has been investigated to influence the immune system directly by their composition itself or indirectly as intact carriers of the active. This review attempts to refer to nanomaterials and drug delivery systems utilised to modulate the immune response. It lists various structural types of nanoparticles discussing their composition and interplay with the immune system. Throughout the literature, both novel and traditional nanoparticles were utilised. The most progressive ones extend beyond the delivery of a single substance moving towards combined drug delivery systems and stimuli-responsive formulations.


Assuntos
Sistema Imunitário/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Nanoestruturas/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanopartículas/química
14.
Int J Pharm ; 563: 384-394, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30959237

RESUMO

Ceramides (Cers) are significant constituents of the stratum corneum (SC), the uppermost skin layer responsible for skin barrier properties. Cers are a heterogeneous group of lipids whose mutual interactions are still unclear. To better understand these interactions, we characterized model membranes containing stearic acid, cholesterol, cholesterol sulfate and one or more of the following ceramides: N-stearoyl-sphingosine (CerNS), N-stearoyl-phytosphingosine (CerNP) and N-(2-hydroxy)stearoyl-phytosphingosine (CerAP). Small angle X-ray scattering and FTIR spectroscopy were used to study lipid arrangement, phase separation and thermotropic behaviour. In the one-Cer systems, the membranes with CerNP showed strong hydrogen bonding and significant phase separation, even after phase transition, while the systems containing CerAP and CerNS had increased lipid miscibility. The multi-Cer systems exhibited different behaviour. In particular, the membrane containing all three Cers was a highly miscible system with narrow one-step phase transition, which, of all the studied samples, occurred at the lowest temperatures. Our results show that even a small variation in Cer structure results in substantially different phase behaviour, which is further affected by the presence of other Cer subclasses. Interestingly, the phase behaviour of the most complex three-Cer system was simpler than that of the others, highlighting the importance of lipid diversity in real SC.


Assuntos
Ceramidas/química , Lipídeos de Membrana/química , Esfingosina/análogos & derivados , Hidroxilação , Transição de Fase , Pele/química , Esfingosina/química , Temperatura
15.
J Lipid Res ; 60(5): 963-971, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30885924

RESUMO

Membrane models of the stratum corneum (SC) lipid barrier, either healthy or affected by recessive X-linked ichthyosis, constructed from ceramide [Cer; nonhydroxyacyl sphingosine N-tetracosanoyl-d-erythro-sphingosine (CerNS24) alone or with omega-O-acylceramide N-(32-linoleyloxy)dotriacontanoyl-d-erythro-sphingosine (CerEOS)], FFAs(C16-24), cholesterol (Chol), and sodium cholesteryl sulfate (CholS) were investigated. X-ray diffraction (XRD) revealed a previously unreported polymorphism of the membranes. In the absence of CerEOS, the membranes formed a short lamellar phase (SLP; the repeat distance d = 5.3 nm), a medium lamellar phase (MLP; d = 10.6 nm), or very long lamellar phases (VLLP; d = 15.9 and 21.2 nm). An increased CholS-to-Chol ratio modulated the membrane polymorphism, although the CholS phase separated at ≥ 7 weight% (of total lipids). The presence of CerEOS led to the stable long lamellar phase (LLP) with d = 12.2 nm and prevented VLLP formation. Our XRD results agree well with recently published cryo-electron microscopy data for vitreous skin sections, while also revealing new structures. Thus, lamellar phases with long repeat distances (MLP and VLLP) may be formed in the absence of omega-O-acylceramide, whereas these ultralong Cer species likely stabilize the final SC lipid architecture of LLP by riveting the adjacent lipid layers.


Assuntos
Ictiose Ligada ao Cromossomo X/metabolismo , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Pele/química , Microscopia Crioeletrônica , Humanos , Ictiose Ligada ao Cromossomo X/genética , Ictiose Ligada ao Cromossomo X/patologia , Lipídeos de Membrana/química , Pele/metabolismo , Pele/patologia
16.
Int J Pharm ; 534(1-2): 287-296, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29061325

RESUMO

The activity of transdermal permeation enhancers is usually evaluated in vitro on human or animal skin, but skin samples can be hard to source and highly variable. To provide a more consistent basis for evaluating the activity of permeation enhancers, we prepared relatively simple and inexpensive artificial membranes that imitate the stratum corneum (SC) lipid matrix. Our membranes were composed of stearic acid, cholesterol, cholesterol sulfate and a ceramide (CER) component consisting of N-2-hydroxystearoyl phytosphingosine (CER[AP]) and/or N-stearoyl phytosphingosine (CER[NP]). First, the permeation of theophylline (TH) and indomethacin (IND) through these membranes was compared with their permeation through porcine skin. Because the mixed CER[AP]/[NP] membrane gave the closest results to skin, this membrane was then used to test the effects of two permeation enhancers: N-dodecyl azepan-2-one (Azone) and (S)-N-acetylproline dodecyl ester (L-Pro2). Both enhancers significantly increased the flux of TH and IND through the skin and, even more markedly, through the lipid membrane, L-Pro2 having a stronger effect than Azone. Thus, our simplified model of the SC lipid membrane based on phytosphingosine CERs appears to be suitable for mimicking skin permeation.


Assuntos
Permeabilidade/efeitos dos fármacos , Pele/metabolismo , Administração Cutânea , Animais , Azepinas/farmacologia , Ceramidas/metabolismo , Colesterol/metabolismo , Humanos , Indometacina/farmacologia , Lipídeos de Membrana/metabolismo , Membranas Artificiais , Absorção Cutânea/efeitos dos fármacos , Ácidos Esteáricos/metabolismo , Suínos , Teofilina/farmacologia
17.
Sci Rep ; 7(1): 6470, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28744000

RESUMO

Ceramide (Cer) release from glucosylceramides (GlcCer) is critical for the formation of the skin permeability barrier. Changes in ß-glucocerebrosidase (GlcCer'ase) activity lead to diminished Cer, GlcCer accumulation and structural defects in SC lipid lamellae; however, the molecular basis for this impairment is not clear. We investigated impaired GlcCer-to-Cer processing in human Cer membranes to determine the physicochemical properties responsible for the barrier defects. Minor impairment (5-25%) of the Cer generation from GlcCer decreased the permeability of the model membrane to four markers and altered the membrane microstructure (studied by X-ray powder diffraction and infrared spectroscopy), in agreement with the effects of topical GlcCer in human skin. At these concentrations, the accumulation of GlcCer was a stronger contributor to this disturbance than the lack of human Cer. However, replacement of 50-100% human Cer by GlcCer led to the formation of a new lamellar phase and the maintenance of a rather good barrier to the four studied permeability markers. These findings suggest that the major cause of the impaired water permeability barrier in complete GlcCer'ase deficiency is not the accumulation of free GlcCer but other factors, possibly the retention of GlcCer bound in the corneocyte lipid envelope.


Assuntos
Permeabilidade da Membrana Celular , Glucosilceramidas/metabolismo , Lipídeos de Membrana/metabolismo , Pele/metabolismo , Administração Tópica , Permeabilidade da Membrana Celular/efeitos dos fármacos , Ceramidas/metabolismo , Impedância Elétrica , Feminino , Glucosilceramidas/administração & dosagem , Glucosilceramidas/farmacologia , Humanos , Indometacina/farmacocinética , Lipídeos de Membrana/química , Permeabilidade , Pele/química , Pele/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Teofilina/farmacocinética , Difração de Raios X
18.
Biophys Chem ; 224: 20-31, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28363088

RESUMO

The Stratum corneum (SC) prevents water loss from the body and absorption of chemicals. SC intercellular spaces contain ceramides (Cer), free fatty acids (FFA), cholesterol (Chol) and cholesteryl sulfate (CholS). Cer with "very long" acyl chains (for example, N-lignoceroyl-sphingosine, CerNS24) are important for skin barrier function, whereas increased levels of "long" acyl Cer (for example, N-palmitoyl-sphingosine, CerNS16) occur in patients suffering from atopic eczema or psoriasis. We studied the impact of the replacement of CerNS24 by CerNS16 on the barrier properties and microstructure of model SC lipid membranes composed of Cer/FFA/Chol/CholS. Membranes containing the long CerNS16 were significantly more permeable to water (by 38-53%), theophylline (by 50-55%) and indomethacin (by 83-120%) than those containing the very long CerNS24 (either with lignoceric acid or a mixture of long to very long chain FFA). Langmuir monolayers with CerNS24 were more condensed than with CerNS16 and atomic force microscopy showed differences in domain formation. X-ray powder diffraction revealed that CerNS24-based membranes formed one lamellar phase and separated Chol, whereas the CerNS16-based membranes formed up to three phases and Chol. These results suggest that replacement of CerNS24 by CerNS16 has a direct negative impact on membrane structure and permeability.


Assuntos
Ceramidas/química , Epiderme/química , Lipídeos de Membrana/química , Colesterol , Ésteres do Colesterol , Epiderme/metabolismo , Ácidos Graxos , Humanos , Microscopia de Força Atômica , Permeabilidade , Difração de Raios X
19.
Anesth Analg ; 124(3): 776-781, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27984227

RESUMO

BACKGROUND: Combined infusions of propofol and sufentanil preparations are frequently used in clinical practice to induce anesthesia and analgesia. However, the stability of propofol emulsions can be affected by dilution with another preparation, sometimes leading to particle coalescence and enlargement. Such unwanted effects can lead to fat embolism syndrome after intravenous application. This study describes the physical stability of 5 commercially available propofol preparations mixed with sufentanil citrate solutions. METHODS: Two common markers of emulsion stability were used in this study; namely, the zeta potential and size distribution of the emulsion droplets. Both were measured using dynamic light scattering. The data for the pure propofol preparations and their mixtures with sufentanil citrate solution were compared. RESULTS: The absolute value of zeta potential decreased in 4 of the 5 propofol preparations after they had been mixed with sufentanil citrate. This effect indicates a lowering of repulsive interactions between the emulsion droplets. Although this phenomenon tends to cause agglomeration, none of the studied mixtures displayed a substantial increase in droplet size within 24 hours of blending. However, our long-term stability study revealed the instability of some of the propofol-sufentanil samples. Two of the 5 studied mixtures displayed a continual increase in particle size. The same 2 preparations showed the greatest reductions in the absolute value of zeta potential, thereby confirming the correlation of both measurement methods. The increase in particle size was more distinct in the samples stored at higher temperatures and with higher sufentanil concentrations. CONCLUSIONS: To ensure the microbial stability of an emulsion infusion preparation, clinical regulations require that such preparations should be applied to patients within 12 hours of opening. In this respect, we can confirm that during this period, none of the studied propofol-sufentanil mixtures displayed any physical instability that could lead to particle enlargement; thus, fat embolism should not be a risk after their intravenous application. However, our long-term stability study revealed differences between commercially available preparations containing the same active ingredient; some of the mixtures showed an increase in particle size and polydispersity over a longer period. Although our results should not be generalized beyond the particular propofol-sufentanil preparations and concentrations studied here, they do suggest that, as a general principle, a compatibility study should be performed for any preparation before the first intravenous application to exclude the risk of droplet aggregation.


Assuntos
Anestésicos Intravenosos/química , Fenômenos Químicos , Propofol/química , Sufentanil/química , Anestésicos Intravenosos/administração & dosagem , Combinação de Medicamentos , Estabilidade de Medicamentos , Humanos , Infusões Intravenosas , Tamanho da Partícula , Propofol/administração & dosagem , Sufentanil/administração & dosagem
20.
Eur J Pharm Biopharm ; 108: 289-296, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27449632

RESUMO

The aim of this study was to follow the skin penetration of a model lipophilic compound (Nile red) delivered by nanoparticulate carriers, the so-called lipid nanocapsules. The nanocapsules consisting of an oil core stabilized by amixture of surfactants were prepared by the phase inversion temperature method. Varying the particle composition (the oil/surfactant ratio) nanoparticles of different size were prepared and characterized. The penetration profile of Nile red delivered into the porcine skin by the nanoparticles compared to non-particulate samples was determined using fluorescence microscopy combined with a novel, statistically robust quantitative image analysis method. This study demonstrated that lipid nanoparticles promoted the skin penetration of encapsulated Nile red in comparison with all the non-particulate samples. Nile red delivered by the lipid-based nanoparticles was able to diffuse across the stratum corneum and partition itself uniformly in the epidermis. No relationship between Nile red penetration into the skin and the particle size was found. Moreover, the presence of sodium chloride in the water phase had a negative impact on the Nile red penetration into the skin. The results indicate that the physico-chemical circumstances of the nanoparticulate formulation play the major role in the penetration of lipophilic substances into the skin.


Assuntos
Portadores de Fármacos/química , Epiderme/efeitos dos fármacos , Lipídeos/química , Nanopartículas/química , Animais , Sistemas de Liberação de Medicamentos , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanocápsulas/química , Óleos/química , Oxazinas/química , Tamanho da Partícula , Pele/efeitos dos fármacos , Pele/patologia , Absorção Cutânea , Software , Tensoativos/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...