Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 60(3): 1652-1665, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32134653

RESUMO

The human sodium iodide symporter (hNIS) is a theranostic reporter gene which concentrates several clinically approved SPECT and PET radiotracers and plays an essential role for the synthesis of thyroid hormones as an iodide transporter in the thyroid gland. Development of hNIS mutants which could enhance translocation of the desired imaging ions is currently underway. Unfortunately, it is hindered by lack of understanding of the 3D organization of hNIS and its relation to anion transport. There are no known crystal structures of hNIS in any of its conformational states. Homology modeling can be very effective in such situations; however, the low sequence identity between hNIS and relevant secondary transporters with available experimental structures makes the choice of a template and the generation of 3D models nontrivial. Here, we report a combined application of homology modeling and molecular dynamics refining of the hNIS structure in its semioccluded state. The modeling was based on templates from the LeuT-fold protein family and was done with emphasis on the refinement of the substrate-ion binding pocket. The consensus model developed in this work is compared to available biophysical and biochemical experimental data for a number of different LeuT-fold proteins. Some functionally important residues contributing to the formation of putative binding sites and permeation pathways for the cotransported Na+ ions and I- substrate were identified. The model predictions were experimentally tested by generation of mutant versions of hNIS and measurement of relative (to WT hNIS) 125I- uptake of 35 hNIS variants.


Assuntos
Simportadores , Sítios de Ligação , Humanos , Iodetos/metabolismo , Simportadores/metabolismo , Glândula Tireoide/metabolismo
2.
Phys Chem Chem Phys ; 18(5): 4191-200, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26784370

RESUMO

The thermodynamics of ion solvation in non-aqueous solvents remains of great significance for understanding cellular transport and ion homeostasis for the design of novel ion-selective materials and applications in molecular pharmacology. Molecular simulations play pivotal roles in connecting experimental measurements to the microscopic structures of liquids. One of the most useful and versatile mimetic systems for understanding biological ion transport is N-methyl-acetamide (NMA). A plethora of theoretical studies for ion solvation in NMA have appeared recently, but further progress is limited by two factors. One is an apparent lack of experimental data on solubility and thermodynamics of solvation for a broad panel of 1 : 1 salts over an appropriate temperature and concentration range. The second concern is more substantial and has to do with the limitations hardwired in the additive (fixed charge) approximations used for most of the existing force-fields. In this submission, we report on the experimental evaluation of LiCl solvation in NMA over a broad range of concentrations and temperatures and compare the results with those of MD simulations with several additive and one polarizable force-field (Drude). By comparing our simulations and experimental results to density functional theory computations, we discuss the limiting factors in existing potential functions. To evaluate the possible implications of explicit and implicit polarizability treatments on ion permeation across biological channels, we performed potential of mean force (PMF) computations for Li(+) transport through a model narrow ion channel with additive and polarizable force-fields.

3.
J Biol Chem ; 287(12): 8852-63, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22291010

RESUMO

Monoamine transporters terminate synaptic neurotransmission and are molecular targets for antidepressants and psychostimulants. Fluorescent reporters can monitor real-time transport and are amenable for high-throughput screening. However, until now, their use has mostly been successful to study the catecholamine transporters but not the serotonin (5HT) transporter. Here, we use fluorescence microscopy, electrophysiology, pharmacology, and molecular modeling to compare fluorescent analogs of 1-methyl-4-phenylpyridinium (MPP(+)) as reporters for the human serotonin transporter (hSERT) in single cells. The fluorescent substrate 4-(4-(dimethylamino)phenyl)-1-methylpyridinium (APP(+)) exhibits superior fluorescence uptake in hSERT-expressing HEK293 cells than other MPP(+) analogs tested. APP(+) uptake is Na(+)- and Cl(-)-dependent, displaced by 5HT, and inhibited by fluoxetine, suggesting APP(+) specifically monitors hSERT activity. ASP(+), which was previously used to study catecholamine transporters, is 10 times less potent than APP(+) at inhibiting 5HT uptake and has minimal hSERT-mediated uptake. Furthermore, in hSERT-expressing oocytes voltage-clamped to -60 mV, APP(+) induced fluoxetine-sensitive hSERT-mediated inward currents, indicating APP(+) is a substrate, whereas ASP(+) induced hSERT-mediated outward currents and counteracted 5HT-induced hSERT currents, indicating ASP(+) possesses activity as an inhibitor. Extra-precise ligand receptor docking of APP(+) and ASP(+) in an hSERT homology model showed both ASP(+) and APP(+) docked favorably within the active region; accordingly, comparable concentrations are required to elicit their opposite electrophysiological responses. We conclude APP(+) is better suited than ASP(+) to study hSERT transport fluorometrically.


Assuntos
Compostos de Anilina/metabolismo , Corantes Fluorescentes/metabolismo , Compostos de Piridínio/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Compostos de Anilina/química , Animais , Transporte Biológico , Linhagem Celular , Corantes Fluorescentes/química , Humanos , Cinética , Compostos de Piridínio/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Xenopus
4.
Biochim Biophys Acta ; 1818(2): 337-47, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22138368

RESUMO

The recent determination of high-resolution crystal structures of several transporters offers unprecedented insights into the structural mechanisms behind secondary transport. These proteins utilize the facilitated diffusion of the ions down their electrochemical gradients to transport the substrate against its concentration gradient. The structural studies revealed striking similarities in the structural organization of ion and solute binding sites and a well-conserved inverted-repeat topology between proteins from several gene families. In this paper we will overview recent atomistic simulations applied to study the mechanisms of selective binding of ion and substrate in LeuT, Glt, vSGLT and hSERT as well as its consequences for the transporter conformational dynamics. This article is part of a Special Issue entitled: Membrane protein structure and function.


Assuntos
Íons/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Sódio/metabolismo , Animais , Sítios de Ligação , Transporte Biológico , Humanos , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Estrutura Secundária de Proteína
5.
J Biol Chem ; 286(35): 30823-30836, 2011 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-21730057

RESUMO

Na(+)- and Cl(-)-dependent uptake of neurotransmitters via transporters of the SLC6 family, including the human serotonin transporter (SLC6A4), is critical for efficient synaptic transmission. Although residues in the human serotonin transporter involved in direct Cl(-) coordination of human serotonin transport have been identified, the role of Cl(-) in the transport mechanism remains unclear. Through a combination of mutagenesis, chemical modification, substrate and charge flux measurements, and molecular modeling studies, we reveal an unexpected role for the highly conserved transmembrane segment 1 residue Asn-101 in coupling Cl(-) binding to concentrative neurotransmitter uptake.


Assuntos
Asparagina/química , Cloretos/química , Neurotransmissores/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Animais , Cisteína/química , Eletrofisiologia/métodos , Células HeLa , Humanos , Íons , Mutagênese Sítio-Dirigida , Norepinefrina/metabolismo , Oócitos/metabolismo , Técnicas de Patch-Clamp , Plasmídeos/metabolismo , Ratos , Serotonina/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...