Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 101: 103437, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557662

RESUMO

Biodegradable electrospun nanofibrous scaffolds for bone tissue engineering applications have been extensively studied as they can provide attractive open-worked architecture resembling natural extracellular matrix, with tunable physical and mechanical properties enhancing positive cellular response. For this purpose, electrospun mats were tested in terms of morphology, mechanical and physical properties, degradation kinetics and related phenomena occurring in micro- and nanoscale. However, detailed description of internal nanostructures of electrospun mats and their changes related to in vitro degradation is still missing. In this manuscript, we report qualitative and quantitative evaluation of internal lamellar nanostructure of electrospun fibrous scaffolds made of pristine polycaprolactone and composite with polymeric matrix and nanoceramic (hydroxyapatite) filler during in vitro degradation. Morphological and mechanical studies performed with an atomic force microscope were followed by scanning electron microscope imaging and X-Ray diffraction. The results suggest degradation-dependent alteration of both organization and thickness of nano-scaled lamellas recorded with atomic force microscope. Moreover, changes of the material's internal structure were followed by enhanced stiffness and higher crystallinity of electrospun fibers.


Assuntos
Eletricidade , Fenômenos Mecânicos , Microscopia de Força Atômica , Nanopartículas/química , Poliésteres/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Durapatita/química , Cinética , Nanoestruturas/química , Poliésteres/metabolismo
2.
Int J Mol Sci ; 19(6)2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849015

RESUMO

The use of laser 3D printers is very perspective in the fabrication of solid and porous implants made of various polymers, metals, and its alloys. The Selective Laser Melting (SLM) process, in which consolidated powders are fully melted on each layer, gives the possibility of fabrication personalized implants based on the Computer Aid Design (CAD) model. During SLM fabrication on a 3D printer, depending on the system applied, there is a possibility for setting the amount of energy density (J/mm³) transferred to the consolidated powders, thus controlling its porosity, contact angle and roughness. In this study, we have controlled energy density in a range 8⁻45 J/mm³ delivered to titanium powder by setting various levels of laser power (25⁻45 W), exposure time (20⁻80 µs) and distance between exposure points (20⁻60 µm). The growing energy density within studied range increased from 63 to 90% and decreased from 31 to 13 µm samples density and Ra parameter, respectively. The surface energy 55⁻466 mN/m was achieved with contact angles in range 72⁻128° and 53⁻105° for water and formamide, respectively. The human mesenchymal stem cells (hMSCs) adhesion after 4 h decreased with increasing energy density delivered during processing within each parameter group. The differences in cells proliferation were clearly seen after a 7-day incubation. We have observed that proliferation was decreasing with increasing density of energy delivered to the samples. This phenomenon was explained by chemical composition of oxide layers affecting surface energy and internal stresses. We have noticed that TiO2, which is the main oxide of raw titanium powder, disintegrated during selective laser melting process and oxygen was transferred into metallic titanium. The typical for 3D printed parts post-processing methods such as chemical polishing in hydrofluoric (HF) or hydrofluoric/nitric (HF/HNO3) acid solutions and thermal treatments were used to restore surface chemistry of raw powders and improve surface.


Assuntos
Titânio/química , Temperatura Alta , Humanos , Ácido Fluorídrico/química , Porosidade , Propriedades de Superfície
3.
J Biomed Mater Res B Appl Biomater ; 100(8): 2156-66, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22888046

RESUMO

The surface layers were formed on titanium by plasma electrolytic oxidation (PEO) in the solutions which contain various amounts of Na(2)SiO(3)x5H(2)O, Na(3)PO(4) x12H(2)O and Ca(CH(3)COO)(2) xH(2)O. The layers were characterized using a scanning electron microscope (SEM) coupled with an energy dispersive spectrometer (EDS) and an X-ray diffractometer (XRD). The titanium/oxide surface layer interface was analyzed by X-ray photoelectron spectroscopy (XPS). The adhesive strength of the oxide layers was evaluated by the scratch-test. The bioactivity of the surface was determined by soaking in a simulated body fluid (SBF) for 7 and 30 days. The corrosion resistance was determined by electrochemical methods after 13, 181, and 733 h exposure in SBF at a temperature of 37°C. The oxide layers obtained were rough and porous and enriched with Ca, P, Si, and Na and their properties depended on the concentration of the components of the electrolyte. The results of the electrochemical examinations, after a 13 h exposure in SBF, show that the surface modification by PEO improves the corrosion resistance of titanium and it is not degraded after a long-term exposure in SBF. The electrochemical impedance spectroscopy (EIS) results indicate that the surface layers have a complex structure.


Assuntos
Técnicas Eletroquímicas , Fosfatos/química , Titânio/química , Cálcio/química , Oxirredução , Fósforo/química , Silício/química , Sódio/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA