Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37998232

RESUMO

Thomson heat absorption corresponding to changes in the Seebeck coefficient with respect to temperature enables the design of thermoelectric coolers wherein Thomson cooling is the dominant term, i.e., the Thomson coolers. Thomson coolers extend the working range of Peltier coolers to larger temperature differences and higher electrical currents. The Thomson coefficient is small in most materials. Recently, large Thomson coefficient values have been measured attributed to thermally induced phase change during magnetic and structural phase transitions. The large Thomson coefficient observed can result in the design of highly efficient Thomson coolers. This work analyzes the performance of Thomson coolers analytically and sets the metrics for evaluating the performance of materials as their constituent components. The maximum heat flux when the Thomson coefficient is constant is obtained and the performance is compared to Peltier coolers. Three dimensionless parameters are introduced which determine the performance of the Thomson coolers and can be used to analyze the coefficient of performance, the maximum heat flux, and the maximum temperature difference of a Thomson cooler.

2.
Phys Rev Mater ; 5(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34250434

RESUMO

Magneto-thermoelectric transport provides an understanding of coupled electron-hole-phonon current in topological materials and has applications in energy conversion and cooling. In this work, we study the Nernst coefficient, the magneto-Seebeck coefficient, and the magnetoresistance of single-crystalline Bi2Te3 under external magnetic field in the range of -3 T to 3 T and in the temperature range of 55 K to 380 K. Moreau's relation is employed to justify both the overall trend of the Nernst coefficient and the temperature at which the Nernst coefficient changes sign. We observe a non-linear relationship between the Nernst coefficient and the applied magnetic field in the temperature range of 55 K to 255 K. An increase in both the Nernst coefficient and the magneto-Seebeck coefficient is observed as the temperature is reduced which can be attributed to the increased mobility of the carriers at lower temperatures. First-principles density functional theory calculations were carried out to physically model the experimental data including electronic and transport properties. Simulation findings agreed with the experiments and provide a theoretical insight to justify the measurements.

3.
Rev Sci Instrum ; 91(11): 113701, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261427

RESUMO

This work combines the principles of the heat spreader method and the imaging capability of the thermoreflectance measurements to measure the in-plane thermal conductivity of thin films without the requirement of film suspension or multiple thermometer deposition. We refer to this hybrid technique as heat diffusion imaging. The thermoreflectance imaging system provides a temperature distribution map across the film surface. The in-plane thermal conductivity can be extracted from the temperature decay profile. By coupling the system with a cryostat, we were able to conduct measurements from 40 K to 400 K. Silicon thin film samples with and without periodic holes were measured and compared with in-plane time-domain thermoreflectance measurements and literature data as validation for heat diffusion imaging.

4.
Sci Adv ; 5(11): eaax7827, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723602

RESUMO

Solid-state thermionic devices based on van der Waals structures were proposed for nanoscale thermal to electrical energy conversion and integrated electronic cooling applications. We study thermionic cooling across gold-graphene-WSe2-graphene-gold structures computationally and experimentally. Graphene and WSe2 layers were stacked, followed by deposition of gold contacts. The I-V curve of the structure suggests near-ohmic contact. A hybrid technique that combines thermoreflectance and cooling curve measurements is used to extract the device ZT. The measured Seebeck coefficient, thermal and electrical conductance, and ZT values at room temperatures are in agreement with the theoretical predictions using first-principles calculations combined with real-space Green's function formalism. This work lays the foundation for development of efficient thermionic devices.

5.
Sci Rep ; 8(1): 9876, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959341

RESUMO

The best thermoelectric materials are believed to be heavily doped semiconductors. The presence of a band gap is assumed to be essential to achieve large thermoelectric power factor and figure of merit. In this work, we propose semi-metals with large asymmetry between conduction and valence bands as an alternative class of thermoelectric materials. To illustrate the idea, we study semi-metallic HgTe in details experimentally and theoretically. We employ ab initio calculations with hybrid exchange-correlation functional to accurately describe the electronic band structure in conjunction with the Boltzmann Transport theory to investigate the electronic transport properties. We calculate the lattice thermal conductivity using first principles calculations and evaluate the overall figure of merit. To validate our theoretical approach, we prepare semi-metallic HgTe samples and characterize their transport properties. Our first-principles calculations agree well with the experimental data. We show that intrinsic HgTe, a semimetal with large disparity in its electron and hole masses, has a high thermoelectric power factor that is comparable to the best known thermoelectric materials. Finally, we propose other possible materials with similar band structures as potential candidates for thermoelectric applications.

6.
Sci Rep ; 8(1): 9303, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915282

RESUMO

Two-dimensional (2D) van der Waals heterostructures (vdWHs) have shown multiple functionalities with great potential in electronics and photovoltaics. Here, we show their potential for solid-state thermionic energy conversion and demonstrate a designing strategy towards high-performance devices. We propose two promising thermionic devices, namely, the p-type Pt-G-WSe2-G-Pt and n-type Sc-WSe2-MoSe2-WSe2-Sc. We characterize the thermionic energy conversion performance of the latter using first-principles GW calculations combined with real space Green's function (GF) formalism. The optimal barrier height and high thermal resistance lead to an excellent performance. The proposed device is found to have a room temperature equivalent figure of merit of 1.2 which increases to 3 above 600 K. A high performance with cooling efficiency over 30% of the Carnot efficiency above 450 K is achieved. Our designing and characterization method can be used to pursue other potential thermionic devices based on vdWHs.

7.
Angew Chem Int Ed Engl ; 56(42): 12946-12951, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28719065

RESUMO

Despite impressive recent advances in the synthesis of lead chalcogenide solid nanoparticles, there are no examples of lead chalcogenide hollow nanoparticles (HNPs) with controlled diameter and shell thickness as current synthetic approaches for HNPs have inherent limitations associated with their complexity, inability to precisely control the dimensions, and limited possibilities with regard to applicable materials. Herein, we report on an unconventional strategy for crafting uniform lead chalcogenide (PbS and PbTe) HNPs with tailorable size, surface chemistry, and near-IR absorption. Amphiphilic star-like triblock copolymers [polystyrene-block-poly(acrylic acid)-block-polystyrene and polystyrene-block-poly(acrylic acid)-block-poly(3,4-ethylenedioxythiophene)] were rationally synthesized and exploited as nanoreactors for the formation of uniform PbS and PbTe HNPs. Compared to their solid counterparts, the near-IR absorption of the HNPs is blue-shifted owing to the hollow interior. This strategy can be readily extended to other types of intriguing low-band-gap HNPs for diverse applications.

8.
Proc Natl Acad Sci U S A ; 113(50): 14272-14276, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911824

RESUMO

Fast and controllable cooling at nanoscales requires a combination of highly efficient passive cooling and active cooling. Although passive cooling in graphene-based devices is quite effective due to graphene's extraordinary heat conduction, active cooling has not been considered feasible due to graphene's low thermoelectric power factor. Here, we show that the thermoelectric performance of graphene can be significantly improved by using hexagonal boron nitride (hBN) substrates instead of SiO2 We find the room temperature efficiency of active cooling in the device, as gauged by the power factor times temperature, reaches values as high as 10.35 W⋅m-1⋅K-1, corresponding to more than doubling the highest reported room temperature bulk power factors, 5 W⋅m-1⋅K-1, in YbAl3, and quadrupling the best 2D power factor, 2.5 W⋅m-1⋅K-1, in MoS2 We further show that the Seebeck coefficient provides a direct measure of substrate-induced random potential fluctuations and that their significant reduction for hBN substrates enables fast gate-controlled switching of the Seebeck coefficient polarity for applications in integrated active cooling devices.

9.
Rep Prog Phys ; 79(9): 095901, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27519021

RESUMO

The recent developments in nanoscale solid-state cooling are reviewed. This includes both theoretical and experimental studies of different physical concepts, as well as nanostructured material design and device configurations. We primarily focus on thermoelectric, thermionic and thermo-magnetic coolers. Particular emphasis is given to the concepts based on metal-semiconductor superlattices, graded materials, non-equilibrium thermoelectric devices, Thomson coolers, and photon assisted Peltier coolers as promising methods for efficient solid-state cooling. Thermomagnetic effects such as magneto-Peltier and Nernst-Ettingshausen cooling are briefly described and recent advances and future trends in these areas are reviewed. The ongoing progress in solid-state cooling concepts such as spin-calorimetrics, electrocalorics, non-equilibrium/nonlinear Peltier devices, superconducting junctions and two-dimensional materials are also elucidated and practical achievements are reviewed. We explain the thermoreflectance thermal imaging microscopy and the transient Harman method as two unique techniques developed for characterization of thermoelectric microrefrigerators. The future prospects for solid-state cooling are briefly summarized.

10.
Nanoscale ; 8(31): 14695-704, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27314610

RESUMO

This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m(-2) K(-1) which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices.

11.
Nat Commun ; 7: 10766, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26948987

RESUMO

The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom-up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS-Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS-Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.

12.
Adv Mater ; 25(11): 1577-82, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23325546

RESUMO

Nanoparticle dopants that are invisible to conduction electrons and have sharp dips in their electron scattering rate versus electron energy close to the Fermi level. Replacement of such dopants with traditional impurities results in simultaneous enhancement of the Seebeck coefficient and the electron mobility and therefore a large enhancement in the thermoelectric power factor can be achieved.

13.
Phys Rev Lett ; 109(12): 126806, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23005976

RESUMO

In this Letter, we aim at making nanoparticles embedded in a host semiconductor with a size comparable to electronic wavelengths "invisible" to the electron transport. Inspired by the recent progress made in optics and working within the framework of the expansion of partial waves, we demonstrate that the opposite effects imposed by potential barriers and wells of a core-shell nanoparticle on the phase shifts associated with the scattered electron wave could make the scattering cross section of the first two partial waves vanish simultaneously. We show that this is sufficient to cloak the nanoparticle from being detected by electrons with specific energy in the sense that a total scattering cross section smaller than 0.01% of the physical cross section can be obtained and a 4 orders of magnitude difference in the total scattering cross section can be presented within an energy range of only 40 meV, indicating possible applications of the "electron cloaks" as novel electronic switches and sensors, and in efficient energy harvesting and conversion technologies.

14.
Nano Lett ; 12(4): 2077-82, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22435933

RESUMO

Modulation-doping was theoretically proposed and experimentally proved to be effective in increasing the power factor of nanocomposites (Si(80)Ge(20))(70)(Si(100)B(5))(30) by increasing the carrier mobility but not the figure-of-merit (ZT) due to the increased thermal conductivity. Here we report an alternative materials design, using alloy Si(70)Ge(30) instead of Si as the nanoparticles and Si(95)Ge(5) as the matrix, to increase the power factor but not the thermal conductivity, leading to a ZT of 1.3 ± 0.1 at 900 °C.

15.
Nano Lett ; 11(6): 2225-30, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21553899

RESUMO

We introduce the concept of modulation doping in three-dimensional nanostructured bulk materials to increase the thermoelectric figure of merit. Modulation-doped samples are made of two types of nanograins (a two-phase composite), where dopants are incorporated only into one type. By band engineering, charge carriers could be separated from their parent grains and moved into undoped grains, which would result in enhanced mobility of the carriers in comparison to uniform doping due to a reduction of ionized impurity scattering. The electrical conductivity of the two-phase composite can exceed that of the individual components, leading to a higher power factor. We here demonstrate the concept via experiment using composites made of doped silicon nanograins and intrinsic silicon germanium grains.


Assuntos
Boro/química , Germânio/química , Nanocompostos/química , Silício/química , Condutividade Elétrica , Propriedades de Superfície , Temperatura
16.
Nano Lett ; 11(1): 225-30, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21141996

RESUMO

Coherent potential approximation is used to study the effect of adding doped spherical nanoparticles inside a host matrix on the thermoelectric properties. This takes into account electron multiple scatterings that are important in samples with relatively high volume fraction of nanoparticles (>1%). We show that with large fraction of uniform small size nanoparticles (∼1 nm), the power factor can be enhanced significantly. The improvement could be large (up to 450% for GaAs) especially at low temperatures when the mobility is limited by impurity or nanoparticle scattering. The advantage of doping via embedded nanoparticles compared to the conventional shallow impurities is quantified. At the optimum thermoelectric power factor, the electrical conductivity of the nanoparticle-doped material is larger than that of impurity-doped one at the studied temperature range (50-500 K) whereas the Seebeck coefficient of the nanoparticle doped material is enhanced only at low temperatures (∼50 K).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...