Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 8: 774, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28553306

RESUMO

Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is a global concern for wheat production, and has been increasingly destructive in Ethiopia, as well as in the United States and in many other countries. As Ethiopia has a long history of stripe rust epidemics, its native wheat germplasm harbors potentially valuable resistance loci. Moreover, the Ethiopian germplasm has been historically underutilized in breeding of modern wheat worldwide and thus the resistance alleles from the Ethiopian germplasm represent potentially novel sources. The objective of this study was to identify loci conferring resistance to predominant Pst races in Ethiopia and the United States. Using a high-density 90 K wheat single nucleotide polymorphism array, a genome-wide association analysis (GWAS) was conducted on 182 durum wheat landrace accessions and contemporary varieties originating from Ethiopia. Landraces were detected to be more resistant at the seedling stage while cultivars were more resistant at the adult-plant stages. GWAS identified 68 loci associated with seedling resistance to one or more races. Six loci on chromosome arms 1AS, 1BS, 3AS, 4BL, and 5BL were associated with resistance against at least two races at the seedling stage, and five loci were previously undocumented. GWAS analysis of field resistance reactions identified 12 loci associated with resistance on chromosomes 1A, 1B, 2BS, 3BL, 4AL, 4B and 5AL, which were detected in at least two of six field screening nurseries at the adult-plant stage. Comparison with previously mapped resistance loci indicates that six of the 12 resistance loci are newly documented. This study reports effective sources of resistance to contemporary races in Ethiopia and the United States and reveals that Ethiopian durum wheat landraces are abundant in novel Pst resistance loci that may be transferred into adapted cultivars to provide resistance against Pst.

2.
Plant Dis ; 101(1): 73-80, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30682307

RESUMO

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat in Ethiopia. In total, 97 isolates were recovered from stripe rust samples collected in Ethiopia in 2013 and 2014. These isolates were tested on a set of 18 Yr single-gene differentials for characterization of races and 7 supplementary differentials for additional information of virulence. Of 18 P. striiformis f. sp. tritici races identified, the 5 most predominant races were PSTv-105 (21.7%), PSTv-106 (17.5%), PSTv-107 (11.3%), PSTv-76 (10.3%), and PSTv-41 (6.2%). High frequencies (>40%) were detected for virulence to resistance genes Yr1, Yr2, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr27, Yr28, Yr31, Yr43, Yr44, YrExp2, and YrA. Low frequencies (<40%) were detected for virulence to Yr10, Yr24, Yr32, YrTr1, Hybrid 46, and Vilmorin 23. None of the isolates were virulent to Yr5, Yr15, YrSP, and YrTye. Among the six collection regions, Arsi Robe and Tiyo had the highest virulence diversities, followed by Bekoji, while Bale and Holeta had the lowest. Evaluation of 178 Ethiopian wheat cultivars and landraces with two of the Ethiopian races and three races from the United States indicated that the Ethiopian races were more virulent on the germplasm than the predominant races of the United States. Thirteen wheat cultivars or landraces that were resistant or moderately resistant to all five tested races should be useful for breeding wheat cultivars with resistance to stripe rust in both countries.

3.
PLoS One ; 9(8): e105593, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25153126

RESUMO

Use of genetic diversity from related wild and domesticated species has made a significant contribution to improving wheat productivity. Synthetic hexaploid wheats (SHWs) exhibit natural genetic variation for resistance and/or tolerance to biotic and abiotic stresses. Stripe rust caused by (Puccinia striiformis f. sp. tritici; Pst), is an important disease of wheat worldwide. To characterise loci conferring resistance to stripe rust in SHWs, we conducted a genome-wide association study (GWAS) with a panel of 181 SHWs using the wheat 9 K SNP iSelect array. The SHWs were evaluated for their response to the prevailing races of Pst at the seedling and adult plant stages, the latter in replicated field trials at two sites in Ethiopia in 2011. About 28% of the SHWs exhibited immunity at the seedling stage while 56% and 83% were resistant to Pst at the adult plant stage at Meraro and Arsi Robe, respectively. A total of 27 SNPs in nine genomic regions (1 BS, 2 AS, 2 BL, 3 BL, 3 DL, 5A, 5 BL, 6DS and 7A) were linked with resistance to Pst at the seedling stage, while 38 SNPs on 18 genomic regions were associated with resistance at the adult plant stage. Six genomic regions were commonly detected at both locations using a mixed linear model corrected for population structure, kinship relatedness and adjusted for false discovery rate (FDR). The loci on chromosome regions 1 AS, 3 DL, 6 DS and 7 AL appeared to be novel QTL; our results confirm that resynthesized wheat involving its progenitor species is a rich source of new stripe (yellow) rust resistance that may be useful in choosing SHWs and incorporating diverse yellow rust (YR) resistance loci into locally adapted wheat cultivars.


Assuntos
Basidiomycota , Variação Genética , Doenças das Plantas/genética , Triticum/genética , Cruzamentos Genéticos , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Plântula/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...