Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2138, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272933

RESUMO

Intracellular pathways transduce signals through changes in post-translational modifications (PTMs) of effector proteins. Among the approaches used to monitor PTM changes are immunoassays and overexpression of recombinant reporter genes. Genome editing by CRISPR/Cas9 provides a new means to monitor PTM changes by inserting reporters onto target endogenous genes while preserving native biology. Ideally, the reporter should be small in order not to interfere with the processes mediated by the target while sensitive enough to detect tightly expressed proteins. HiBiT is a 1.3 kDa reporter peptide capable of generating bioluminescence through complementation with LgBiT, an 18 kDa subunit derived from NanoLuc. Using HiBiT CRISPR/Cas9-modified cell lines in combination with fluorescent antibodies, we developed a HiBiT-BRET immunoassay (a.k.a. Immuno-BRET). This is a homogeneous immunoassay capable of monitoring post-translational modifications on diverse protein targets. Its usefulness was demonstrated for the detection of phosphorylation of multiple signaling pathway targets (EGFR, STAT3, MAPK8 and c-MET), as well as chromatin containing histone H3 acetylation on lysine 9 and 27. These results demonstrate the ability to efficiently monitor endogenous biological processes modulated by post-translational modifications using a small bioluminescent peptide tag and fluorescent antibodies, providing sensitive quantitation of the response dynamics to multiple stimuli.


Assuntos
Cromatina , Processamento de Proteína Pós-Traducional , Fosforilação , Acetilação , Peptídeos
2.
Cell Chem Biol ; 30(11): 1354-1365.e6, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37643616

RESUMO

RAF dimer inhibitors offer therapeutic potential in RAF- and RAS-driven cancers. The utility of such drugs is predicated on their capacity to occupy both RAF protomers in the RAS-RAF signaling complex. Here we describe a method to conditionally quantify drug-target occupancy at selected RAF protomers within an active RAS-RAF complex in cells. RAF target engagement can be measured in the presence or absence of any mutant KRAS allele, enabling the high-affinity state of RAF dimer inhibitors to be quantified in the cellular milieu. The intracellular protomer selectivity of clinical-stage type II RAF inhibitors revealed that ARAF protomer engagement, but not engagement of BRAF or CRAF, is commensurate with inhibition of MAPK signaling in various mutant RAS cell lines. Our results support a fundamental role for ARAF in mutant RAS signaling and reveal poor ARAF protomer vulnerability for a cohort of RAF inhibitors undergoing clinical evaluation.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Transdução de Sinais , Humanos , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Mutação , Sistema de Sinalização das MAP Quinases
3.
Methods Mol Biol ; 2612: 195-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795369

RESUMO

Traditional immunoassays to detect secreted or intracellular proteins can be tedious, require multiple washing steps, and are not easily adaptable to a high-throughput screening (HTS) format. To overcome these limitations, we developed Lumit, a novel immunoassay approach that combines bioluminescent enzyme subunit complementation technology and immunodetection. This bioluminescent immunoassay does not require washes or liquid transfers and takes less than 2 h to complete in a homogeneous "Add and Read" format. In this chapter, we describe step-by-step protocols to create Lumit immunoassays for the detection of (1) secreted cytokines from cells, (2) phosphorylation levels of a specific signaling pathway node protein, and (3) a biochemical protein-protein interaction between a viral surface protein and its human receptor.


Assuntos
Citocinas , Testes Imunológicos , Humanos , Imunoensaio/métodos
4.
PLoS One ; 17(11): e0274343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36445904

RESUMO

The fast rate of viral mutations of SARS CoV-2 result in decrease in the efficacy of the vaccines that have been developed before the emergence of these mutations. Thus, it is believed that using additional measures to combat the virus is not only advisable but also beneficial. Two antiviral drugs were authorized for emergency use by the FDA, namely Pfizer's two-drug regimen sold under the brand name Paxlovid, and Merck's drug Lagevrio. Pfizer's two-drug combination consists of nirmatrelvir, a protease inhibitor that blocks coronavirus ability to multiply and another antiviral, ritonavir, that lowers the rate of drug clearance to boost the longevity and activity of the protease inhibitor. Merck's drug Lagevrio (molnupiravir) is a nucleoside analogue with a mechanism of action that aims to introduce errors into the genetic code of the virus. We believe the armament against the virus can be augmented by the addition of another class of enzyme inhibitors that are required for viral survival and its ability to replicate. Enzymes like nsp14 and nsp10/16 methyltransferases (MTases) represent another class of drug targets since they are required for viral RNA translation and evading the host immune system. In this communication, we have successfully verified that the MTase-Glo, which is universal and homogeneous MTase assay can be used to screen for inhibitors of the two pivotal enzymes nsp14 and nsp16 of SARS CoV-2. Furthermore, we have carried out extensive studies on those enzymes using different RNA substrates and tested their activity using various inhibitors and verified the utility of this assay for use in drug screening programs. We anticipate our work will be pursued further to screen for large libraries to discover new and selective inhibitors for the viral enzymes particularly that these enzymes are structurally different from their mammalian counterparts.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , SARS-CoV-2/genética , Metiltransferases/genética , Antivirais/farmacologia , Inibidores de Proteases , RNA Viral , Medições Luminescentes , Mamíferos
5.
SLAS Discov ; 27(4): 249-257, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35288294

RESUMO

KRAS is one of the most heavily mutated oncogenes in cancer and targeting mutant KRAS with drugs has proven difficult. However, recent FDA approval of the KRAS G12C selective inhibitor sotorasib (AMG-510), has breathed new life into the drive to develop mutant KRAS inhibitors. In an effort to study RAS inhibitors in cells and identify new compounds that inhibit Ras signaling, western blotting and ELISA assays are commonly used. These traditional immunoassays are tedious, require multiple washing steps, and are not easily adaptable to a high throughput screening (HTS) format. To overcome these limitations, we applied Lumit immunoassay technology to analyze RAS signaling pathway activation and inhibition through the detection of phosphorylated ERK. The assay we developed was used to rank order potencies of allele specific inhibitors within cell lines harboring various activating KRAS mutations. An inhibition profile was obtained indicating various potencies and selectivity of the inhibitors, including MRTX-1133, which was shown to be highly potent against KRAS G12D signaling. MRTX-1133 had approximately 40 and 400 times less inhibitory potency against G12C and G12V mutant KRAS, respectively, while no inhibition of WT KRAS was observed. The potency of PROTAC compound LC-2 targeting selective degradation of KRAS G12C was also tested using the Lumit pERK immunoassay, and a maximal decrease in RAS signaling was achieved. Lumit immunoassays provide a rapid, homogeneous platform for detecting signaling pathway activation and inhibition. Our results demonstrate that this bioluminescent technology can streamline the analysis of signaling pathways of interest, such as RAS-dependent pathways, and be used to identify much needed inhibitors. The results further imply that similar assay designs could be applied to other signaling pathway nodes.


Assuntos
Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular , Inibidores de Checkpoint Imunológico , Imunoensaio , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Antineoplásicos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/enzimologia , Neoplasias/genética , Oncogenes , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
6.
Molecules ; 26(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684811

RESUMO

Traditional glycosyltransferase (GT) activity assays are not easily configured for rapid detection nor for high throughput screening because they rely on radioactive product isolation, the use of heterogeneous immunoassays or mass spectrometry. In a typical glycosyltransferase biochemical reaction, two products are generated, a glycosylated product and a nucleotide released from the sugar donor substrate. Therefore, an assay that detects the nucleotide could be universal to monitor the activity of diverse glycosyltransferases in vitro. Here we describe three homogeneous and bioluminescent glycosyltransferase activity assays based on UDP, GDP, CMP, and UMP detection. Each of these assays are performed in a one-step detection that relies on converting the nucleotide product to ATP, then to bioluminescence using firefly luciferase. These assays are highly sensitive, robust and resistant to chemical interference. Various applications of these assays are presented, including studies on the specificity of sugar transfer by diverse GTs and the characterization of acceptor substrate-dependent and independent nucleotide-sugar hydrolysis. Furthermore, their utility in screening for specific GT inhibitors and the study of their mode of action are described. We believe that the broad utility of these nucleotide assays will enable the investigation of a large number of GTs and may have a significant impact on diverse areas of Glycobiology research.


Assuntos
Glicosiltransferases/antagonistas & inibidores , Glicosiltransferases/metabolismo , Medições Luminescentes/métodos , Trifosfato de Adenosina/metabolismo , Animais , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Glicômica/métodos , Ensaios de Triagem em Larga Escala/métodos , Cinética , Luciferases de Vaga-Lume/metabolismo , Nucleotídeos/metabolismo , Especificidade por Substrato
7.
Sci Rep ; 11(1): 18428, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531417

RESUMO

Here we describe a homogeneous bioluminescent immunoassay based on the interaction between Fc-tagged SARS-CoV-2 Spike RBD and human ACE2, and its detection by secondary antibodies labeled with NanoLuc luciferase fragments LgBit and SmBit. The assay utility for the discovery of novel inhibitors was demonstrated with a panel of anti-RBD antibodies, ACE2-derived miniproteins and soluble ACE2. Studying the effect of RBD mutations on ACE2 binding showed that the N501Y mutation increased RBD apparent affinity toward ACE2 tenfold that resulted in escaping inhibition by some anti-RBD antibodies. In contrast, while E484K mutation did not highly change the binding affinity, it still escaped antibody inhibition likely due to changes in the epitope recognized by the antibody. Also, neutralizing antibodies (NAbs) from COVID-19 positive samples from two distinct regions (USA and Brazil) were successfully detected and the results further suggest the persistence of NAbs for at least 6 months post symptom onset. Finally, sera from vaccinated individuals were tested for NAbs and showed varying neutralizing activity after first and second doses, suggesting the assay can be used to assess immunity of vaccinated populations. Our results demonstrate the broad utility and ease of use of this methodology both for drug discovery and clinical research applications.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/análise , COVID-19/prevenção & controle , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos Antivirais/análise , Brasil , COVID-19/imunologia , Humanos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Mutação , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Estados Unidos , Vacinação
8.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385330

RESUMO

Glycoconjugates play major roles in the infectious cycle of the trypanosomatid parasite Leishmania While GDP-Fucose synthesis is essential, fucosylated glycoconjugates have not been reported in Leishmania major [H. Guo et al., J. Biol. Chem. 292, 10696-10708 (2017)]. Four predicted fucosyltransferases appear conventionally targeted to the secretory pathway; SCA1/2 play a role in side-chain modifications of lipophosphoglycan, while gene deletion studies here showed that FUT2 and SCAL were not essential. Unlike most eukaryotic glycosyltransferases, the predicted α 1-2 fucosyltransferase encoded by FUT1 localized to the mitochondrion. A quantitative "plasmid segregation" assay, expressing FUT1 from the multicopy episomal pXNG vector in a chromosomal null ∆fut1- background, established that FUT1 is essential. Similarly, "plasmid shuffling" confirmed that both enzymatic activity and mitochondrial localization were required for viability, comparing import-blocked or catalytically inactive enzymes, respectively. Enzymatic assays of tagged proteins expressed in vivo or of purified recombinant FUT1 showed it had a broad fucosyltransferase activity including glycan and peptide substrates. Unexpectedly, a single rare ∆fut1- segregant (∆fut1s ) was obtained in rich media, which showed severe growth defects accompanied by mitochondrial dysfunction and loss, all of which were restored upon FUT1 reexpression. Thus, FUT1 along with the similar Trypanosoma brucei enzyme TbFUT1 [G. Bandini et al., bioRxiv, https://www.biorxiv.org/content/10.1101/726117v2 (2021)] joins the eukaryotic O-GlcNAc transferase isoform as one of the few glycosyltransferases acting within the mitochondrion. Trypanosomatid mitochondrial FUT1s may offer a facile system for probing mitochondrial glycosylation in a simple setting, and their essentiality for normal growth and mitochondrial function renders it an attractive target for chemotherapy of these serious human pathogens.


Assuntos
Fucosiltransferases/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Leishmania major/metabolismo , Mitocôndrias/enzimologia , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Meios de Cultura , Fucosiltransferases/genética , Mutação , Plasmídeos , Transporte Proteico , Proteínas de Protozoários/genética , Galactosídeo 2-alfa-L-Fucosiltransferase
9.
Nat Commun ; 11(1): 2743, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488087

RESUMO

Concerted multidisciplinary efforts have led to the development of Cyclin-Dependent Kinase inhibitors (CDKi's) as small molecule drugs and chemical probes of intracellular CDK function. However, conflicting data has been reported on the inhibitory potency of CDKi's and a systematic characterization of affinity and selectivity against intracellular CDKs is lacking. We have developed a panel of cell-permeable energy transfer probes to quantify target occupancy for all 21 human CDKs in live cells, and present a comprehensive evaluation of intracellular isozyme potency and selectivity for a collection of 46 clinically-advanced CDKi's and tool molecules. We observed unexpected intracellular activity profiles for a number of CDKi's, offering avenues for repurposing of highly potent molecules as probes for previously unreported targets. Overall, we provide a broadly applicable method for evaluating the selectivity of CDK inhibitors in living cells, and present a refined set of tool molecules to study CDK function.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas Inibidoras de Quinase Dependente de Ciclina/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Proteína Quinase CDC2 , Quinase 2 Dependente de Ciclina , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Quinase 9 Dependente de Ciclina , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Fosforilação , Relação Estrutura-Atividade
10.
Commun Biol ; 3: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31909200

RESUMO

Monitoring cellular signaling events can help better understand cell behavior in health and disease. Traditional immunoassays to study proteins involved in signaling can be tedious, require multiple steps, and are not easily adaptable to high throughput screening (HTS). Here, we describe a new immunoassay approach based on bioluminescent enzyme complementation. This immunoassay takes less than two hours to complete in a homogeneous "Add and Read" format and was successfully used to monitor multiple signaling pathways' activation through specific nodes of phosphorylation (e.g pIκBα, pAKT, and pSTAT3). We also tested deactivation of these pathways with small and large molecule inhibitors and obtained the expected pharmacology. This approach does not require cell engineering. Therefore, the phosphorylation of an endogenous substrate is detected in any cell type. Our results demonstrate that this technology can be broadly adapted to streamline the analysis of signaling pathways of interest or the identification of pathway specific inhibitors.


Assuntos
Imunoensaio/métodos , Medições Luminescentes/métodos , Transdução de Sinais , Biologia Celular/instrumentação , Descoberta de Drogas/instrumentação , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Inibidor de NF-kappaB alfa/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo
11.
SLAS Discov ; 23(3): 242-254, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29239273

RESUMO

The modification of a diverse array of substrates by Fe(II)/2-oxoglutarate-dependent dioxygenases is central to the modulation of distinct biological processes such as epigenetics, hypoxic signaling, and DNA/RNA repair. Of these, JumonjiC domain-containing histone lysine demethylases (JMJCs) and prolyl hydroxylases are potential drug targets due to their relevance to human diseases. Thus, assays to interrogate this enzyme superfamily are needed to identify selective and potent inhibitors as leads for drug development and that could also be useful research tools. Since succinate is a common product to all Fe(II)/2-oxoglutarate-dependent dioxygenase reactions, a method that detects succinate would be suitable to all members of this enzyme superfamily. We therefore developed a bioluminescent and homogenous succinate detection assay and validated its use with diverse sets of enzyme classes. We evaluated the substrate specificities of these enzymes, their apparent kinetic constants, and inhibition profiles and mode of action of reported and novel inhibitors. Our results indicate that succinate detection is a useful readout for the monitoring of enzymatic activities with distinct substrate entities, as well as for the discovery of novel inhibitors. By investigating a large number of Fe(II)/2-oxoglutarate-dependent enzymes, this method could have a significant impact on the field of dioxygenase research.


Assuntos
Dioxigenases/metabolismo , Inibidores Enzimáticos/farmacologia , Compostos Ferrosos/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Medições Luminescentes/métodos , Ácido Succínico/metabolismo , Descoberta de Drogas/métodos , Humanos , Cinética , Especificidade por Substrato
12.
SLAS Technol ; 22(2): 153-162, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28095176

RESUMO

Kinase profiling during drug discovery is a necessary process to confirm inhibitor selectivity and assess off-target activities. However, cost and logistical limitations prevent profiling activities from being performed in-house. We describe the development of an automated and flexible kinase profiling workflow that combines ready-to-use kinase enzymes and substrates in convenient eight-tube strips, a bench-top liquid handling device, ADP-Glo Kinase Assay (Promega, Madison, WI) technology to quantify enzyme activity, and a multimode detection instrument. Automated methods were developed for kinase reactions and quantification reactions to be assembled on a Gilson (Middleton, WI) PIPETMAX, following standardized plate layouts for single- and multidose compound profiling. Pipetting protocols were customized at runtime based on user-provided information, including compound number, increment for compound titrations, and number of kinase families to use. After the automated liquid handling procedures, a GloMax Discover (Promega) microplate reader preloaded with SMART protocols was used for luminescence detection and automatic data analysis. The functionality of the automated workflow was evaluated with several compound-kinase combinations in single-dose or dose-response profiling formats. Known target-specific inhibitions were confirmed. Novel small molecule-kinase interactions, including off-target inhibitions, were identified and confirmed in secondary studies. By adopting this streamlined profiling process, researchers can quickly and efficiently profile compounds of interest on site.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Medições Luminescentes/métodos , Fosfotransferases/antagonistas & inibidores , Fosfotransferases/análise , Automação Laboratorial/métodos , Fluxo de Trabalho
13.
Epigenomics ; 8(3): 321-39, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26950288

RESUMO

AIM: To develop a homogenous, nonradioactive, antibody-free and universal assay for diverse families of methyltransferases and monitor the activity of these enzymes in a high-throughput format. MATERIALS & METHODS: The assay conditions are optimized for monitoring the enzymatic activity of a broad range of methyltransferases regardless of the chemical structure or nature of the enzyme substrate in a low- and high-throughput-formatted protocols. The assay detects S-adenosyl-L-homocysteine, the universal reaction products of all methyltransferases. RESULTS: We demonstrate the utility of using this protocol to determine the activity of DNA, protein methyltransferases and also to determine kinetic parameters of several inhibitors using purified enzymes. The assay is sensitive (20-30 nM of S-adenosyl-L-homocysteine) and robust. CONCLUSION: The methyltransferase Glo is nonradioactive, antibody-free and homogenous, universal assay to determine enzyme activity of diverse families of methyltransferases. The assay is formatted to meet the requirements of high-throughput screening in drug discovery programs searching for modulators of methyltransferases.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Metiltransferases/análise , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/normas , Medições Luminescentes/métodos , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , S-Adenosil-Homocisteína/metabolismo , Sensibilidade e Especificidade
15.
Methods Mol Biol ; 1360: 59-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26501902

RESUMO

The advancement of a kinase inhibitor throughout drug discovery and development is predicated upon its selectivity towards the target of interest. Thus, profiling the compound against a broad panel of kinases is important for providing a better understanding of its activity and for obviating any off-target activities that can result in undesirable consequences. To assess the selectivity and potency of an inhibitor against multiple kinases, it is desirable to use a universal assay that can monitor the activity of all classes of kinases regardless of the nature of their substrates. The luminescent ADP-Glo kinase assay is a universal platform that measures kinase activity by quantifying the amount of the common kinase reaction product ADP. Here we present a method using standardized kinase profiling systems for inhibitor profiling studies based on ADP detection by luminescence. The kinase profiling systems are sets of kinases organized by family, presented in multi-tube strips containing eight enzymes, each with corresponding substrate strips, and standardized for optimal kinase activity. We show that using the kinase profiling strips we could quickly and easily generate multiple selectivity profiles using small or large kinase panels, and identify compound promiscuity within the kinome.


Assuntos
Medições Luminescentes/métodos , Inibidores de Proteínas Quinases/farmacologia , Fitas Reagentes , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Difosfato de Adenosina/análise , Descoberta de Drogas/métodos , Processamento Eletrônico de Dados , Humanos , Indicadores e Reagentes , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes/instrumentação , Inibidores de Proteínas Quinases/isolamento & purificação , Receptores Proteína Tirosina Quinases/metabolismo , Especificidade por Substrato
16.
J Biol Chem ; 290(37): 22638-48, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26240142

RESUMO

O-Linked ß-N-acetylglucosamine (O-GlcNAc) is a post-translational modification of proteins in multicellular organisms. O-GlcNAc modification is catalyzed by the O-GlcNAc transferase (OGT), which transfers N-acetylglucosamine (GlcNAc) from the nucleotide sugar donor UDP-GlcNAc to serine or threonine residues of protein substrates. Recently, we reported a novel metabolic labeling method to introduce the diazirine photocross-linking functional group onto O-GlcNAc residues in mammalian cells. In this method, cells are engineered to produce diazirine-modified UDP-GlcNAc (UDP-GlcNDAz), and the diazirine-modified GlcNAc analog (GlcNDAz) is transferred to substrate proteins by endogenous OGT, producing O-GlcNDAz. O-GlcNDAz-modified proteins can be covalently cross-linked to their binding partners, providing information about O-GlcNAc-dependent interactions. The utility of the method was demonstrated by cross-linking highly O-GlcNAc-modified nucleoporins to proteins involved in nuclear transport. For practical application of this method to a broader range of O-GlcNAc-modified proteins, efficient O-GlcNDAz production is critical. Here we examined the ability of OGT to transfer GlcNDAz and found that the wild-type enzyme (wtOGT) prefers the natural substrate, UDP-GlcNAc, over the unnatural UDP-GlcNDAz. This competition limits O-GlcNDAz production in cells and the extent of O-GlcNDAz-dependent cross-linking. Here we identified an OGT mutant, OGT(C917A), that efficiently transfers GlcNDAz and, surprisingly, has altered substrate specificity, preferring to transfer GlcNDAz rather than GlcNAc to protein substrates. We confirmed the reversed substrate preference by determining the Michaelis-Menten parameters describing the activity of wtOGT and OGT(C917A) with both UDP-GlcNAc and UDP-GlcNDAz. Use of OGT(C917A) enhances O-GlcNDAz production, yielding improved cross-linking of O-GlcNDAz-modified molecules both in vitro and in cells.


Assuntos
Acetilglucosamina/metabolismo , Mutação de Sentido Incorreto , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/genética , Substituição de Aminoácidos , Células HeLa , Humanos , Células K562 , N-Acetilglucosaminiltransferases/genética , Especificidade por Substrato/fisiologia
17.
Assay Drug Dev Technol ; 7(6): 585-97, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20035616

RESUMO

The lipid second messengers phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) and sphingosine 1-phosphate (S1P) are well recognized to play important roles in a variety of cellular processes, including cell proliferation, apoptosis, metabolism, and migration. Disruption of lipid signaling pathways often leads to human cancers, making lipid kinases attractive drug targets. In order to develop novel drugs against these enzymes, an assay that monitors their activity and amenable to high-throughput scale for screening large number of compounds is essential. The newly developed ADP-Glo assay is such an assay that measures kinase activity of lipid kinases by detecting the formation of ADP using a highly robust and sensitive bioluminescence approach. We evaluated this technology for studying lipid kinases, class I PI3 kinases, and sphingosine kinases and we show that the assay exhibits good tolerance to different lipids substrates. It generates kinetic parameters for substrates and inhibitors similar to those reported in the literature using other published assay formats. The sensitivity and robustness of this assay allow the detection of 5% of substrate conversion with Z' values >0.7 making it attractive for high-throughput screening (HTS) applications. It is noteworthy that ADP-Glo assay addresses the need for a single integrated platform to comprehensively measure all classes of lipid and protein kinases. The selected inhibitors of lipid kinases can be screened against the panel of desired protein kinases, making ADP-Glo assay a simple, inexpensive platform for HTS and profiling of lipid kinases.


Assuntos
Difosfato de Adenosina/análise , Difosfato de Adenosina/química , Lipídeos/análise , Proteínas Luminescentes/análise , Fosfotransferases/análise , Mapeamento de Interação de Proteínas/métodos , Técnicas de Química Analítica , Lipídeos/química , Medições Luminescentes , Fosfotransferases/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Assay Drug Dev Technol ; 7(6): 560-72, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20105026

RESUMO

ADP-Glo is a novel bioluminescent, homogeneous assay for monitoring ADP producing biochemical reactions and thus it is an ideal assay for detecting enzyme activity using a wide variety of substrates. It is a universal assay that can be used with protein kinases, lipid kinases, sugar kinases, and many more kinases as well as ATPases. Because of its high sensitivity, it is suitable for monitoring enzyme activities at very early substrate conversions requiring very low amount of enzymes. Furthermore, as the assay is applicable to a broad range of ATP and substrate concentrations, it is optimal for enzymes that require high ATP and substrate concentrations. This is critical since inhibitor potency has to be demonstrated at the cellular level where ATP is present at millimolar concentrations. ADP-Glo is performed in 2 steps upon completion of kinase reaction: a combined termination of kinase reaction and depletion of remaining ATP in the first step, and conversion of generated ADP to ATP and the newly produced ATP to light output using luciferase/luciferin reaction in the second step. The luminescent signal generated is proportional to the ADP concentration produced and is correlated with the kinase activity. Due to its high signal to background and luminescent readout, this assay is less susceptible to generation of false hits and thus it is applicable to not only primary and secondary screening but also kinase profiling.


Assuntos
Difosfato de Adenosina/análise , Difosfato de Adenosina/química , Proteínas Luminescentes/análise , Fosfotransferases/análise , Fosfotransferases/química , Mapeamento de Interação de Proteínas/métodos , Técnicas de Química Analítica/métodos , Medições Luminescentes , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Assay Drug Dev Technol ; 7(6): 573-84, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20059362

RESUMO

Kinases continue to be one of the most important targets in today's drug discovery efforts. Following the identification of lead compounds through screening efforts, it is important to profile these leads against other kinases within that family, as well as from other families, to ascertain potential off-target effects. Because many kinase assays require the use of different substrates, optimization time and costs during profiling can be prohibitive. Here we demonstrate the versatility of a luminescent ADP accumulation assay, where one set of reagents can be used for a wide variety of kinases with differing K(m app) for ATP and substrates. Assay sensitivity allows for the use of low enzyme concentrations and small percent ATP conversion levels while still maintaining high signal:background ratios. We have used a simple, inexpensive automated pipetting system to automate the entire process from enzyme optimization through generation of compound IC(50) values. Agreement with literature values proves this combination of chemistry and instrumentation provides a simple, yet robust solution for automated kinase profiling.


Assuntos
Difosfato de Adenosina/análise , Difosfato de Adenosina/química , Fosfotransferases/análise , Fosfotransferases/química , Mapeamento de Interação de Proteínas/métodos , Técnicas de Química Analítica/métodos , Medições Luminescentes , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
J Biol Chem ; 281(46): 35520-30, 2006 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-16973627

RESUMO

The AGCVIIIa kinases of Arabidopsis are members of the eukaryotic PKA, PKG, and PKC group of regulatory kinases. One AGCVIIIa kinase, PINOID (PID), plays a fundamental role in the asymmetrical localization of membrane proteins during polar auxin transport. The remaining 16 AGCVIIIa genes have not been associated with single mutant phenotypes, suggesting that the corresponding kinases function redundantly. Consistent with this idea, we find that the genes encoding the Arabidopsis AGCVIIIa kinases have spatially distinct, but overlapping, expression domains. Here we show that the majority of Arabidopsis AGCVIIIa kinases are substrates for the 3-phosphoinositide-dependent kinase 1 (PDK1) and that trans-phosphorylation by PDK1 correlates with activation of substrate AGCVIIIa kinases. Mutational analysis of two conserved regulatory domains was used to demonstrate that sequences located outside of the C-terminal PDK1 interaction (PIF) domain and the activation loop are required for functional interactions between PDK1 and its substrates. A subset of GFP-tagged AGCVIIIa kinases expressed in Saccharomyces cerevisiae and tobacco BY-2 cells were preferentially localized to the cytoplasm (AGC1-7), nucleus (WAG1 and KIPK), and the cell periphery (PID). We present evidence that PID insertion domain sequences are sufficient to direct the observed peripheral localization. We find that PID specifically but non-selectively binds to phosphoinositides and phosphatidic acid, suggesting that PID might directly interact with the plasma membrane through protein-lipid interactions. The initial characterization of the AGCVIIIa kinases presented here provides a framework for elucidating the physiological roles of these kinases in planta.


Assuntos
Arabidopsis/enzimologia , Proteínas Quinases/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Sequência de Aminoácidos , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Proteínas Quinases/genética , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...