Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Asian Pac J Cancer Prev ; 25(6): 1959-1967, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38918657

RESUMO

BACKGROUND: As one of the main molecules in BCR-ABL signaling, c-Myc acts as a pivotal key in disease progression and disruption of long-term remission in patients with CML. OBJECTIVES: To clarify the effects of c-Myc inhibition in CML, we examined the anti-tumor property of a well-known small molecule inhibitor of c-Myc 10058-F4 on K562 cell line. METHODS: This experimental study was conducted in K562 cell line for evaluation of cytotoxic activity of 10058-F4 using Trypan blue and MTT assays. Flow cytometry and Quantitative RT-PCR analysis were also conducted to determine its mechanism of action. Additionally, Annexin/PI staining was performed for apoptosis assessment. RESULTS: The results of Trypan blue and MTT assay demonstrated that inhibition of c-Myc, as shown by suppression of c-Myc expression and its associated genes PP2A, CIP2A, and hTERT, could decrease viability and metabolic activity of K562 cells, respectively. Moreover, a robust elevation in cell population in G1-phase coupled with up-regulation of p21 and p27 expression shows that 10058-F4 could hamper cell proliferation, at least partly, through induction of G1 arrest. Accordingly, we found that 10058-F4 induced apoptosis via increasing Bax and Bad; In contrast, no significant alterations were observed NF-KB pathway-targeted anti-apoptotic genes in the mRNA levels. Notably, disruption of the NF-κB pathway with bortezomib as a common proteasome inhibitor sensitized K562 cells to the cytotoxic effect of 10058-F4, substantiating the fact that the NF-κB axis functions probably attenuate the K562 cells sensitivity to c-Myc inhibition. CONCLUSIONS: It can be concluded from the results of this study that inhibition of c-Myc induces anti-neoplastic effects on CML-derived K562 cells as well as increases the efficacy of imatinib. For further insight into the safety and effectiveness of 10058-F4 in CML, in vivo studies will be required.


Assuntos
Apoptose , Proliferação de Células , Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas Proto-Oncogênicas c-myc , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células K562 , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Células Tumorais Cultivadas , Ácidos Borônicos/farmacologia , RNA Mensageiro/genética , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Telomerase/antagonistas & inibidores
2.
Mol Biol Rep ; 50(12): 10157-10167, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924446

RESUMO

BACKGROUND: Due to its remarkable efficacy in producing hematologic, cytogenetic, and molecular remissions, the FDA approved Imatinib as the first-line treatment for newly diagnosed Chronic Myeloid Leukemia (CML) patients. However, in some patients, failure to completely eradicate leukemic cells and the escape of these cells from death will lead to the development of resistance to Imatinib, and many are concerned about the prospects of this Tyrosine Kinase Inhibitor (TKI). It has been documented that the compensatory overexpression of c-Myc is among the most critical mechanisms that promote drug efflux and resistance in CML stem cells. METHODS: In order to examine the potential of c-Myc inhibition through the use of 10058-F4 to enhance the anti-leukemic properties of Imatinib, we conducted trypan blue and MTT assays. Additionally, we employed flow cytometric analysis and qRT-PCR to assess the effects of this combination on cell cycle progression and apoptosis. RESULTS: The findings of our study indicate that the combination of 10058-F4 and Imatinib exhibited significantly stronger anti-survival and anti-proliferative effects on CML-derived-K562 cells in comparison to either agent administered alone. It is noteworthy that these results were also validated in the CML-derived NALM-1 cell line. Molecular analysis of this synergistic effect revealed that the inhibition of c-Myc augmented the efficacy of Imatinib by modulating the expression of genes related to cell cycle, apoptosis, autophagy, and proteasome. CONCLUSIONS: Taken together, the findings of this investigation have demonstrated that the suppression of the c-Myc oncoprotein through the use of 10058-F4 has augmented the effectiveness of Imatinib, suggesting that this amalgamation could offer a fresh perspective on an adjunctive treatment for individuals with CML. Nevertheless, additional scrutiny, encompassing in-vivo examinations and clinical trials, is requisite.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Fusão bcr-abl/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Apoptose
3.
Cell Biol Int ; 45(5): 1111-1121, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33501756

RESUMO

Although the identification of tyrosine kinase inhibitors (TKIs) has changed the treatment paradigm of many cancer types including chronic myeloid leukemia (CML), still adjustment of neoplastic cells to cytotoxic effects of anticancer drugs is a serious challenge. In the area of drug resistance, epigenetic alterations are at the center of attention and the present study aimed to evaluate whether blockage of epigenetics mechanisms using a pan-histone deacetylase (HDAC) inhibitor induces cell death in CML-derived K562 cells. We found that the abrogation of HDACs using panobinostat resulted in a reduction in survival of the K562 cell line through p27-mediated cell cycle arrest. Noteworthy, the results of the synergistic experiments revealed that HDAC suppression could be recruited as a way to potentiate cytotoxicity of Imatinib and to enhance the therapeutic efficacy of CML. Here, we proposed for the first time that the inhibitory effect of panobinostat was overshadowed, at least partially, through the aberrant activation of the phosphoinositide 3-kinase (PI3K)/c-Myc axis. Meanwhile, we found that upon blockage of autophagy and the proteasome pathway, as the main axis involved in the activation of autophagy, the anti-leukemic property of the HDAC inhibitor was potentiated. Taken together, our study suggests the beneficial application of HDAC inhibition in the treatment strategies of CML; however, further in vivo studies are needed to determine the efficacy of this inhibitor, either as a single agent or in combination with small molecule inhibitors of PI3K and/or c-Myc in this malignancy.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Células K562/efeitos dos fármacos , Células K562/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Panobinostat/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA