Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 20(4): 967-979, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372877

RESUMO

Epithelial-mesenchymal transition (EMT) is a crucial process with significance in the metastasis of malignant tumors. It is through the acquisition of plasticity that cancer cells become more mobile and gain the ability to metastasize to other tissues. The mesenchymal-epithelial transition (MET) is the return to an epithelial state, which allows for the formation of secondary tumors. Both processes, EMT and MET, are regulated by different pathways and different mediators, which affects the sophistication of the overall tumorigenesis process. Not insignificant are also cancer stem cells and their participation in the angiogenesis, which occur very intensively within tumors. Difficulties in effectively treating cancer are primarily dependent on the potential of cancer cells to rapidly expand and occupy secondarily vital organs. Due to the ability of these cells to spread, the concept of the circulating tumor cell (CTC) has emerged. Interestingly, CTCs exhibit molecular diversity and stem-like and mesenchymal features, even when derived from primary tumor tissue from a single patient. While EMT is necessary for metastasis, MET is required for CTCs to establish a secondary site. A thorough understanding of the processes that govern the balance between EMT and MET in malignancy is crucial.


Assuntos
Transição Epitelial-Mesenquimal , Células Neoplásicas Circulantes , Células-Tronco Neoplásicas , Neovascularização Patológica , Humanos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Neovascularização Patológica/patologia , Neoplasias/patologia , Neoplasias/metabolismo , Animais , Fenótipo , Proliferação de Células/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/patologia
2.
BMC Cancer ; 24(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166752

RESUMO

Long non-coding RNA (lncRNA) H19 has gained significant recognition as a pivotal contributor to the initiation and advancement of gynecologic cancers, encompassing ovarian, endometrial, cervical, and breast cancers. H19 exhibits a complex array of mechanisms, demonstrating dualistic effects on tumorigenesis as it can function as both an oncogene and a tumor suppressor, contingent upon the specific context and type of cancer being investigated. In ovarian cancer, H19 promotes tumor growth, metastasis, and chemoresistance through modulation of key signaling pathways and interaction with microRNAs. Conversely, in endometrial cancer, H19 acts as a tumor suppressor by inhibiting proliferation, inducing apoptosis, and regulating epithelial-mesenchymal transition. Additionally, H19 has been implicated in cervical and breast cancers, where it influences cell proliferation, invasion, and immune evasion. Moreover, H19 has potential as a diagnostic and prognostic biomarker for gynecologic cancers, with its expression levels correlating with clinical parameters and patient outcomes. Understanding the functional roles of H19 in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized treatment approaches. Further investigation into the intricate molecular mechanisms underlying H19's involvement in gynecologic malignancies is warranted to fully unravel its therapeutic potential and clinical implications. This review aims to elucidate the functional roles of H19 in various gynecologic malignancies.


Assuntos
Neoplasias da Mama , Neoplasias dos Genitais Femininos , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias dos Genitais Femininos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais
3.
Life Sci ; 332: 122126, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769803

RESUMO

Small extracellular vesicles (sEVs) are a type of membranous vesicles that can be released by cells into the extracellular space. The relationship between sEVs and non-coding RNAs (ncRNAs) is highly intricate and interdependent. This symbiotic relationship plays a pivotal role in facilitating intercellular communication and holds profound implications for a myriad of biological processes. The concept of sEVs and their ncRNA cargo as a "Trojan Horse" highlights their remarkable capacity to traverse biological barriers and surreptitiously deliver their cargo to target cells, evading detection by the host-immune system. Accumulating evidence suggests that sEVs may be harnessed as carriers to ferry therapeutic ncRNAs capable of selectively silencing disease-driving genes, particularly in conditions such as cancer. This approach presents several advantages over conventional drug delivery methods, opening up new possibilities for targeted therapy and improved treatment outcomes. However, the utilization of sEVs and ncRNAs as therapeutic agents raises valid concerns regarding the possibility of unforeseen consequences and unintended impacts that may emerge from their application. It is important to consider the fundamental attributes of sEVs and ncRNAs, including by an in-depth analysis of the practical and clinical potentials of exosomes, serving as a representative model for sEVs encapsulating ncRNAs.

4.
Cancer Med ; 12(17): 17592-17602, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37492996

RESUMO

BACKGROUND: HPV infection can cause cancer, and standard treatments often result in recurrence. The extent to which liquid biopsy using HPV circulating tumor DNA (HPV ctDNA) can be used as a promising marker for predicting recurrence in HPV-related cancers remains to be validated. Here we conducted a systematic review and meta-analysis to assess its effectiveness in predicting treatment response. METHODS: We conducted a systematic literature search of online databases, including PubMed, Embase, Scopus, and the Cochrane Library, up to December 2022. The goal was to identify survival studies that evaluated the potential of plasma HPV ctDNA at baseline and end-of-treatment (EoT) in predicting recurrence of related cancers. Hazard ratios were estimated directly from models or extracted from Kaplan-Meier plots. RESULTS: The pooled effect of HPV ctDNA presence on disease recurrence was estimated to be HR = 7.97 (95% CI: [3.74, 17.01]). Subgroup analysis showed that the risk of recurrence was HR = 2.17 (95% CI: [1.07, 4.41]) for baseline-positive cases and HR = 13.21 (95% CI: [6.62, 26.36]) for EoT-positive cases. Significant associations were also observed between recurrence of oropharyngeal squamous cell carcinoma (HR = 12.25 (95% CI: [2.62, 57.36])) and cervical cancer (HR = 4.60 (95% CI: [2.08, 10.17])) in plasma HPV ctDNA-positive patients. CONCLUSIONS: The study found that HPV ctDNA detection can predict the rate of relapse or recurrence after treatment, with post-treatment measurement being more effective than baseline assessment. HPV ctDNA could be used as a surrogate or incorporated with other methods for detecting residual disease.


Assuntos
DNA Tumoral Circulante , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico , Recidiva Local de Neoplasia
5.
Cell Biol Int ; 46(11): 1717-1728, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36030535

RESUMO

Malignantly transformed cells must alter their metabolic status to stay viable in a harsh microenvironment and maintain their ability to invade and spread. Anoikis, a specific detachment-related form of apoptotic cell death, is a potential barrier to cancer cell metastasis. Several molecular/pathway alterations have been implicated in preventing anoikis in metastatic cancers. Specific alterations in the lipid metabolism machinery (such as an increase in fatty acid uptake and synthesis) and modifications in the carbohydrate and amino acid metabolism are partially identified mechanisms associated with the anoikis resistance in various types of cancers, among other survival benefits. Following a summary of the molecular basis of the anoikis pathway, its resistance mechanisms, and the fundamentals of lipid metabolism in cancer, this article aims to elucidate the impact of lipid metabolism deviations recruited by cancer cells to escape anoikis.


Assuntos
Anoikis , Neoplasias , Aminoácidos , Carboidratos , Linhagem Celular Tumoral , Ácidos Graxos , Humanos , Lipídeos , Metástase Neoplásica , Neoplasias/metabolismo , Microambiente Tumoral
6.
J Gastrointest Cancer ; 53(4): 1040-1049, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34611831

RESUMO

PURPOSE: Esophageal cancer is the second most common cancer among men and women. There is a need to systematically assess the current evidence to map out the contribution of genetic factors in the development of esophageal squamous cell carcinoma (ESCC). METHODS: A literature search was carried out on published and unpublished studies up to August 2021 in Medline (PubMed), Embase (Ovid), Scopus, Proquest, Web of Science, and Google scholar. Studies that have reported the frequency of genetic mutations in ESCC were included in this study. RESULTS: A total of 1238 titles were retrieved through searches, and finally, 56 articles, including 8114 samples, met our predefined inclusion criteria. Of the included studies, 31 were conducted in China, 12 in Japan, and the remaining were conducted in various nations, including Brazil, Korea, and Iran. Most of our included studies evaluated the TP53 (n = 37 studies) and PIK3CA (n = 30 studies) gene mutations. TP53 (68.6%; 95% CI: 61.6-74.9), CCND1 (39.3%; 95% CI: 26.2-54.1), MDM2 (24.9%; 95% CI: 9.5-51.0), NOTCH1/2/3 (17.9%; 95% CI: 15.0-21.2), KMT2D (17.4%; 95% CI: 12.4-23.8), CDKN2A (15.0%; 95% CI: 8.1-26.1), PIK3CA (13.8%; 95% CI: 10.3-18.1), FAT1 (13.3%; 95% CI: 11.7-15.0), and EGFR (9.9%; 95% CI: 5.6-17.0) were the most common involved genetic factors in developing ESCC. CONCLUSION: This systematic review and meta-analysis revealed that more than 10% of ESCC patients had changes in TP53, CCND1, MDM2, NOTCH1/2/3, KMT2D, CDKN2A, PIK3CA, and FAT1 genes, which can highlight their role in developing ESCC. TP53, CCND1, and MDM2 are the most prevalent, demonstrating 68.6%, 39.3%, and 24.9% of the mutations in ESCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Masculino , Humanos , Feminino , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética
7.
Mol Biol Res Commun ; 11(4): 173-181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36777002

RESUMO

Papillary thyroid carcinoma (PTC) is the most common endocrine cancer. However, the role of biomechanics in the development and progression of PTC is obscure. The microarray dataset GSE104005 was examined to identify important microRNAs (miRNAs or miRs) and their probable roles in the carcinogenesis of PTC. The gene expression omnibus (GEO) database was used to obtain the data. R was used to access the differentially expressed miRNAs (DEMs) and genes (DEGs). The multiMiR software was used to predict DEM targets. To validate the top DEMs and DEGs, thirty tissue samples were obtained from PTC patients who had their thyroids removed and compared with 30 normal samples. The total RNA content of the tumor and corresponding non-tumoral adjacent samples were purified and converted to cDNA. Expression levels of top dysregulated miRNAs and their target and predicted DEG were evaluated using the RT-qPCR method. miR-182 and miR-183 were top upregulated miRs and miR-30d was the most downregulated miR among DEMs. Furthermore, FOXO1 which was shown to be targeted by aforementioned miRNAs, was the most downregulated genes among other DEGs. 10 hub nodes were detected by PPI construction. PTEN was the hub node with highest score. The in vitro gene expression analysis was also showed the same expression pattern in tissues. Significant increase in miR-182-5p and miR-183-5p expressions, as well as a significant decrease in FOXO1 and miR-30d-5p expressions, suggest that PTC cells may tend to preserve their autophagy capability.

8.
Mol Biol Res Commun ; 11(3): 133-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36718241

RESUMO

Papillary thyroid carcinoma (PTC) accounts for approximately 80% of all human thyroid malignancies. Recently, there has been a dramatic rise in the prevalence of thyroid cancer all over the globe. Through analysis of the GEO database, GSE104005, the authors of the current research were able to determine the differential expression of microRNAs (DEMs) as well as their target genes. Real-time PCR was used on a total of 40 samples, 40 of which were from PTC samples and 40 from normal tissues, in order to validate the discovered DEMs and the genes. Gene Ontology (GO) categories were identified, and KEGG was used to conduct pathway enrichment analysis. The multiMiR R package was used to predict target genes of DEMs. Mir-142 was found to be overexpressed in PTC samples, as compared to normal tissues, and this was validated by the identification and validation. In addition, metal ion binding and the cellular response to metal ions were identified as essential pathways in the carcinogenesis of PTC. This demonstrates their significance in the development of this malignancy. The results of our research will serve as the foundation for further research in the area of miRNA-based cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...