Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-481058

RESUMO

The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics that are effective against a variety of strains of the virus. Herein, we characterize a human VH domain, F6, which we generated by sequentially panning large phage displayed VH libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized VH domain, resulted in a construct (F6-ab8-Fc) that neutralized Omicron pseudoviruses with a half-maximal neutralizing concentration (IC50) of 4.8 nM in vitro. Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 VOCs - including the recently emerged Omicron variant - and highlight a vulnerable epitope within the spike protein RBD that may be exploited to achieve broad protection against circulating variants.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-473178

RESUMO

Mutations in the spike glycoproteins of SARS-CoV-2 variants of concern have independently been shown to enhance aspects of spike protein fitness. Here, we report the discovery of a novel antibody fragment (VH ab6) that neutralizes all major variants, with a unique mode of binding revealed by cryo-EM studies. Further, we provide a comparative analysis of the mutational effects within variant spikes and identify the structural role of mutations within the NTD and RBD in evading antibody neutralization. Our analysis shows that the highly mutated Gamma N-terminal domain exhibits considerable structural rearrangements, partially explaining its decreased neutralization by convalescent sera. Our results provide mechanistic insights into the structural, functional, and antigenic consequences of SARS-CoV-2 spike mutations and highlight a spike protein vulnerability that may be exploited to achieve broad protection against circulating variants.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-436481

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) transmission with several emerging variants remain uncontrolled in many countries, indicating the pandemic remains severe. Recent studies showed reduction of neutralization against these emerging SARS-CoV-2 variants by vaccine-elicited antibodies. Among those emerging SARS-CoV-2 variants, a panel of amino acid mutations was characterized including those in the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) glycoprotein. In the present study, we evaluated our previously identified antibody and antibody domains for binding to these RBD variants with the emerging mutations, and neutralization of pseudo typed viruses carrying spike proteins with such mutations. Our results showed that one previously identified antibody domain, ab6, can bind 32 out of 35 RBD mutants tested in an ELISA assay. All three antibodies and antibody domains can neutralize pseudo typed B.1.1.7 (UK variant), but only the antibody domain ab6 can neutralize the pseudo typed virus with the triple mutation (K417N, E484K, N501Y). This domain and its improvements have potential for therapy of infections caused by SARS-CoV-2 mutants.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-093088

RESUMO

Effective therapies are urgently needed for the SARS-CoV-2/COVID19 pandemic. We identified panels of fully human monoclonal antibodies (mAbs) from eight large phage-displayed Fab, scFv and VH libraries by panning against the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) glycoprotein. One high affinity mAb, IgG1 ab1, specifically neutralized replication competent SARS-CoV-2 with exceptional potency as measured by two different assays. There was no enhancement of pseudovirus infection in cells expressing Fc{gamma} receptors at any concentration. It competed with human angiotensin-converting enzyme 2 (hACE2) for binding to RBD suggesting a competitive mechanism of virus neutralization. IgG1 ab1 potently neutralized mouse ACE2 adapted SARS-CoV-2 in wild type BALB/c mice and native virus in hACE2 expressing transgenic mice. The ab1 sequence has relatively low number of somatic mutations indicating that ab1-like antibodies could be quickly elicited during natural SARS-CoV-2 infection or by RBD-based vaccines. IgG1 ab1 does not have developability liabilities, and thus has potential for therapy and prophylaxis of SARS-CoV-2 infections. The rapid identification (within 6 days) of potent mAbs shows the value of large antibody libraries for response to public health threats from emerging microbes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...