Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 110018, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38883818

RESUMO

The murine embryonic diaphragm is a primary model for studying myogenesis and neuro-muscular synaptogenesis, both representing processes regulated by spatially organized genetic programs of myonuclei located in distinct myodomains. However, a spatial gene expression pattern of embryonic mouse diaphragm has not been reported. Here, we provide spatially resolved gene expression data for horizontally sectioned embryonic mouse diaphragms at embryonic days E14.5 and E18.5. These data reveal gene signatures for specific muscle regions with distinct maturity and fiber type composition, as well as for a central neuromuscular junction (NMJ) and a peripheral myotendinous junction (MTJ) compartment. Comparing spatial expression patterns of wild-type mice with those of transgenic mice lacking either the skeletal muscle calcium channel CaV1.1 or ß-catenin, reveals curtailed muscle development and dysregulated expression of genes potentially involved in NMJ formation. Altogether, these datasets provide a powerful resource for further studies of muscle development and NMJ formation in the mouse.

2.
iScience ; 26(12): 108525, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38162030

RESUMO

Non-coding RNAs (ncRNAs) are pivotal in gene regulation during development and disease. MicroRNAs have been extensively studied in neurogenesis. However, limited knowledge exists about the developmental signatures of other ncRNA species in sensory neuron differentiation, and human dorsal root ganglia (DRG) ncRNA expression remains undocumented. To address this gap, we generated a comprehensive atlas of small ncRNA species during iPSC-derived sensory neuron differentiation. Utilizing iPSC-derived sensory neurons and human DRG RNA sequencing, we unveiled signatures describing developmental processes. Our analysis identified ncRNAs associated with various sensory neuron stages. Striking similarities in ncRNA expression signatures between human DRG and iPSC-derived neurons support the latter as a model to bridge the translational gap between preclinical findings and human disorders. In summary, our research sheds light on the role of ncRNA species in human nociceptors, and NOCICEPTRA2.0 offers a comprehensive ncRNA database for sensory neurons that researchers can use to explore ncRNA regulators in nociceptors thoroughly.

3.
Mol Ther Nucleic Acids ; 28: 794-813, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35664695

RESUMO

Exosomes have emerged as a valuable repository of novel biomarkers for human diseases such as chronic kidney disease (CKD). From a healthy control group, we performed microRNA (miRNA) profiling of urinary exosomes and compared it with a cell culture model of renal proximal tubular epithelial cells (RPTECs). Thereby, a large fraction of abundant urinary exosomal miRNAs could also be detected in exosomes derived from RPTECs, indicating them as a suitable model system for investigation of CKD. We subsequently analyzed exosomes from RPTECs in pro-inflammatory and pro-fibrotic states, mimicking some aspects of CKD. Following cytokine treatment, we observed a significant increase in exosome release and identified 30 dysregulated exosomal miRNAs, predominantly associated with the regulation of pro-inflammatory and pro-fibrotic-related pathways. In addition to miRNAs, we also identified 16 dysregulated exosomal mitochondrial RNAs, highlighting a pivotal role of mitochondria in sensing renal inflammation. Inhibitors of exosome biogenesis and release significantly altered the abundance of selected candidate miRNAs and mitochondrial RNAs, thus suggesting distinct sorting mechanisms of different non-coding RNA (ncRNA) species into exosomes. Hence, these two exosomal ncRNA species might be employed as potential indicators for predicting the pathogenesis of CKD and also might enable effective monitoring of the efficacy of CKD treatment.

4.
Pflugers Arch ; 474(9): 965-978, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35655042

RESUMO

Despite numerous studies which have explored the pathogenesis of pain disorders in preclinical models, there is a pronounced translational gap, which is at least partially caused by differences between the human and rodent nociceptive system. An elegant way to bridge this divide is the exploitation of human-induced pluripotent stem cell (iPSC) reprogramming into human iPSC-derived nociceptors (iDNs). Several protocols were developed and optimized to model nociceptive processes in health and disease. Here we provide an overview of the different approaches and summarize the knowledge obtained from such models on pain pathologies associated with monogenetic sensory disorders so far. In addition, novel perspectives offered by increasing the complexity of the model systems further to better reflect the natural environment of nociceptive neurons by involving other cell types in 3D model systems are described.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nociceptividade , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Nociceptores/metabolismo , Dor/metabolismo
5.
Adv Sci (Weinh) ; 8(21): e2102354, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34486248

RESUMO

Nociceptors are primary afferent neurons serving the reception of acute pain but also the transit into maladaptive pain disorders. Since native human nociceptors are hardly available for mechanistic functional research, and rodent models do not necessarily mirror human pathologies in all aspects, human induced pluripotent stem cell-derived nociceptors (iDN) offer superior advantages as a human model system. Unbiased mRNA::microRNA co-sequencing, immunofluorescence staining, and qPCR validations, reveal expression trajectories as well as miRNA target spaces throughout the transition of pluripotent cells into iDNs. mRNA and miRNA candidates emerge as regulatory hubs for neurite outgrowth, synapse development, and ion channel expression. The exploratory data analysis tool NOCICEPTRA is provided as a containerized platform to retrieve experimentally determined expression trajectories, and to query custom gene sets for pathway and disease enrichments. Querying NOCICEPTRA for marker genes of cortical neurogenesis reveals distinct similarities and differences for cortical and peripheral neurons. The platform provides a public domain neuroresource to exploit the entire data sets and explore miRNA and mRNA as hubs regulating human nociceptor differentiation and function.


Assuntos
Diferenciação Celular/genética , MicroRNAs/metabolismo , Interface Usuário-Computador , Linhagem Celular , Redes Reguladoras de Genes/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Nociceptores/citologia , Nociceptores/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma
6.
Cytokine ; 144: 155582, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34058569

RESUMO

The pleiotropic cytokine interleukin-6 (IL-6) is emerging as a molecule with both beneficial and destructive potentials. It can exert opposing actions triggering either neuron survival after injury or causing neurodegeneration and cell death in neurodegenerative or neuropathic disorders. Importantly, neurons respond differently to IL-6 and this critically depends on their environment and whether they are located in the peripheral or the central nervous system. In addition to its hub regulator role in inflammation, IL-6 is recently emerging as an important regulator of neuron function in health and disease, offering exciting possibilities for more mechanistic insight into the pathogenesis of mental, neurodegenerative and pain disorders and for developing novel therapies for diseases with neuroimmune and neurogenic pathogenic components.


Assuntos
Sobrevivência Celular/fisiologia , Interleucina-6/metabolismo , Neurônios/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Humanos , Inflamação/metabolismo , Doenças Neurodegenerativas/metabolismo
7.
Brain Sci ; 10(6)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503260

RESUMO

Preclinical research using different rodent model systems has largely contributed to the scientific progress in the pain field, however, it suffers from interspecies differences, limited access to human models, and ethical concerns. Human induced pluripotent stem cells (iPSCs) offer major advantages over animal models, i.e., they retain the genome of the donor (patient), and thus allow donor-specific and cell-type specific research. Consequently, human iPSC-derived nociceptors (iDNs) offer intriguingly new possibilities for patient-specific, animal-free research. In the present study, we characterized iDNs based on the expression of well described nociceptive markers and ion channels, and we conducted a side-by-side comparison of iDNs with mouse sensory neurons. Specifically, immunofluorescence (IF) analyses with selected markers including early somatosensory transcription factors (BRN3A/ISL1/RUNX1), the low-affinity nerve growth factor receptor (p75), hyperpolarization-activated cyclic nucleotide-gated channels (HCN), as well as high voltage-gated calcium channels (VGCC) of the CaV2 type, calcium permeable TRPV1 channels, and ionotropic GABAA receptors, were used to address the characteristics of the iDN phenotype. We further combined IF analyses with microfluorimetric Ca2+ measurements to address the functionality of these ion channels in iDNs. Thus, we provide a detailed morphological and functional characterization of iDNs, thereby, underpinning their enormous potential as an animal-free alternative for human specific research in the pain field for unveiling pathophysiological mechanisms and for unbiased, disease-specific personalized drug development.

8.
Cells ; 9(1)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963421

RESUMO

MicroRNAs (miRNAs) function as master switches for post-transcriptional gene expression. Their genes are either located in the extragenic space or within host genes, but these intragenic miRNA::host gene interactions are largely enigmatic. The aim of this study was to investigate the location and co-regulation of all to date available miRNA sequences and their host genes in an unbiased computational approach. The majority of miRNAs were located within intronic regions of protein-coding and non-coding genes. These intragenic miRNAs exhibited both increased target probability as well as higher target prediction scores as compared to a model of randomly permutated genes. This was associated with a higher number of miRNA recognition elements for the hosted miRNAs within their host genes. In addition, strong indirect autoregulation of host genes through modulation of functionally connected gene clusters by intragenic miRNAs was demonstrated. In addition to direct miRNA-to-host gene targeting, intragenic miRNAs also appeared to interact with functionally related genes, thus affecting their host gene function through an indirect autoregulatory mechanism. This strongly argues for the biological relevance of autoregulation not only for the host genes themselves but, more importantly, for the entire gene cluster interacting with the host gene.


Assuntos
Drosophila/genética , Regulação da Expressão Gênica/genética , MicroRNAs/genética , Peixe-Zebra/genética , Animais , Biologia Computacional , Bases de Dados Genéticas , Éxons , Homeostase/genética , Humanos , Íntrons , Camundongos , Modelos Genéticos , Família Multigênica , Mapeamento de Interação de Proteínas , RNA Antissenso
9.
Front Mol Neurosci ; 12: 30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873001

RESUMO

Amongst the many neurotransmitter systems causally linked to the expression of social behavior, glutamate appears to play a pivotal role. In particular, metabotropic glutamate 5 (mGlu5) receptors have received much attention as its altered function has been reported in several mouse models of autism spectrum disorders and mental retardation. Inhibition of the activity of mGlu5 receptors by means of genetic or pharmacological manipulations improved social deficits in some of these animal models. However, in normal wild-type (WT) mice, pharmacological blockade of mGlu5 receptors yielded inconsistent results. The aim of our study was to investigate the actual contribution of decreased or absent mGlu5 receptor function in sociability and anxiety-like behavior as well as to explore the impact of mGlu5 receptor ablation on the pattern of brain activation upon social exposure. Here we show that Grm5-/- mice display higher social preference indexes compared to age-matched WT mice in the three-chambered social task. However, this effect was accompanied by a decreased exploratory activity during the test and increased anxiety-like behavior. Contrary to mGlu5 receptor ablation, the mGlu5 receptor negative allosteric modulator 3-((2-methyl-1,4-thiazolyl)ethynyl)pyridine (MTEP) induced anxiolytic effects without affecting social preference in WT mice. By mapping c-Fos expression in 21 different brain regions known to be involved in social interaction, we detected a specific activation of the prefrontal cortex and dorsolateral septum in Grm5-/- mice following social interaction. C-Fos expression correlation-based network and graph theoretical analyses further suggested dysfunctional connectivity and disruption of the functional brain network generated during social interaction in Grm5-/- mice. The lack of mGlu5 receptors resulted in profound rearrangements of the functional impact of prefrontal and hippocampal regions in the social interaction network. In conclusion, this work reveals a complex contribution of mGlu5 receptors in sociability and anxiety and points to the importance of these receptors in regulating brain functional connectivity during social interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...