Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
J Physiol ; 601(18): 4121-4133, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37598301

RESUMO

Glycine receptors (GlyRs), together with GABAA receptors, mediate postsynaptic inhibition in most spinal cord and hindbrain neurons. In several CNS regions, GlyRs are also expressed in presynaptic terminals. Here, we analysed the effects of a phospho-deficient mutation (S346A) in GlyR α3 subunits on inhibitory synaptic transmission in superficial spinal dorsal horn neurons, where this subunit is abundantly expressed. Unexpectedly, we found that not only were the amplitudes of evoked glycinergic inhibitory postsynaptic currents (IPSCs) significantly larger in GlyRα3(S346A) mice than in mice expressing wild-type α3GlyRs (GlyRα3(WT) mice), but so were those of GABAergic IPSCs. Decreased frequencies of spontaneously occurring glycinergic and GABAergic miniature IPSCs (mIPSCs) with no accompanying change in mIPSC amplitudes suggested a change in presynaptic transmitter release. Paired-pulse experiments on glycinergic IPSCs revealed an increased paired-pulse ratio and a smaller coefficient of variation in GlyRα3(S346A) mice, which together indicate a reduction in transmitter release probability and an increase in the number of releasable vesicles. Paired-pulse ratios of GABAergic IPSCs recorded in the presence of strychnine were not different between genotypes, while the coefficient of variation was smaller in GlyRα3(S346A) mice, demonstrating that the decrease in release probability was readily reversible by GlyR blockade, while the difference in the size of the pool of releasable vesicles remained. Taken together, our results suggest that presynaptic α3 GlyRs regulate synaptic glycine and GABA release in superficial dorsal horn neurons, and that this effect is potentially regulated by their phosphorylation status. KEY POINTS: A serine-to-alanine point mutation was introduced into the glycine receptor α3 subunit of mice. This point mutation renders α3 glycine receptors resistant to protein kinase A mediated phosphorylation but has otherwise only small effects on receptor function. Patch-clamp recordings from neurons in mouse spinal cord slices revealed an unexpected increase in the amplitudes of both glycinergic and GABAergic evoked inhibitory postsynaptic currents (IPSCs). Miniature IPSCs, paired-pulse ratios and synaptic variation analyses indicate a change in synaptic glycine and GABA release. The results strongly suggest that α3 subunit-containing glycine receptors are expressed on presynaptic terminals of inhibitory dorsal horn neurons where they regulate transmitter release.


Assuntos
Glicina , Receptores de Glicina , Animais , Camundongos , Ácido gama-Aminobutírico , Mutação , Células do Corno Posterior , Receptores de GABA-A/genética , Receptores de Glicina/genética , Transmissão Sináptica
2.
Sci Rep ; 13(1): 11561, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464016

RESUMO

Unmyelinated non-peptidergic nociceptors (NP afferents) arborise in lamina II of the spinal cord and receive GABAergic axoaxonic synapses, which mediate presynaptic inhibition. However, until now the source of this axoaxonic synaptic input was not known. Here we provide evidence that it originates from a population of inhibitory calretinin-expressing interneurons (iCRs), which correspond to lamina II islet cells. The NP afferents can be assigned to 3 functionally distinct classes (NP1-3). NP1 afferents have been implicated in pathological pain states, while NP2 and NP3 afferents also function as pruritoceptors. Our findings suggest that all 3 of these afferent types innervate iCRs and receive axoaxonic synapses from them, providing feedback inhibition of NP input. The iCRs also form axodendritic synapses, and their targets include cells that are themselves innervated by the NP afferents, thus allowing for feedforward inhibition. The iCRs are therefore ideally placed to control the input from non-peptidergic nociceptors and pruritoceptors to other dorsal horn neurons, and thus represent a potential therapeutic target for the treatment of chronic pain and itch.


Assuntos
Nociceptores , Medula Espinal , Animais , Camundongos , Calbindina 2 , Células do Corno Posterior , Medula Espinal/fisiologia , Sinapses
3.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333120

RESUMO

Unmyelinated non-peptidergic nociceptors (NP afferents) arborise in lamina II of the spinal cord and receive GABAergic axoaxonic synapses, which mediate presynaptic inhibition. However, until now the source of this axoaxonic synaptic input was not known. Here we provide evidence that it originates from a population of inhibitory calretinin-expressing interneurons (iCRs), which correspond to lamina II islet cells. The NP afferents can be assigned to 3 functionally distinct classes (NP1-3). NP1 afferents have been implicated in pathological pain states, while NP2 and NP3 afferents also function as pruritoceptors. Our findings suggest that all 3 of these afferent types innervate iCRs and receive axoaxonic synapses from them, providing feedback inhibition of NP input. The iCRs also form axodendritic synapses, and their targets include cells that are themselves innervated by the NP afferents, thus allowing for feedforward inhibition. The iCRs are therefore ideally placed to control the input from non-peptidergic nociceptors and pruritoceptors to other dorsal horn neurons, and thus represent a potential therapeutic target for the treatment of chronic pain and itch.

4.
Int J Mol Sci ; 24(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37240402

RESUMO

Neurosteroids and benzodiazepines are modulators of the GABAA receptors, thereby causing anxiolysis. Furthermore, benzodiazepines such as midazolam are known to cause adverse side-effects on cognition upon administration. We previously found that midazolam at nanomolar concentrations (10 nM) blocked long-term potentiation (LTP). Here, we aim to study the effect of neurosteroids and their synthesis using XBD173, which is a synthetic compound that promotes neurosteroidogenesis by binding to the translocator protein 18 kDa (TSPO), since they might provide anxiolytic activity with a favourable side-effect profile. By means of electrophysiological measurements and the use of mice with targeted genetic mutations, we revealed that XBD173, a selective ligand of the translocator protein 18 kDa (TSPO), induced neurosteroidogenesis. In addition, the exogenous application of potentially synthesised neurosteroids (THDOC and allopregnanolone) did not depress hippocampal CA1-LTP, the cellular correlate of learning and memory. This phenomenon was observed at the same concentrations that neurosteroids conferred neuroprotection in a model of ischaemia-induced hippocampal excitotoxicity. In conclusion, our results indicate that TSPO ligands are promising candidates for post-ischaemic recovery exerting neuroprotection, in contrast to midazolam, without detrimental effects on synaptic plasticity.


Assuntos
Midazolam , Neuroesteroides , Camundongos , Animais , Midazolam/farmacologia , Neuroesteroides/farmacologia , Neuroproteção , Hipoglicemiantes/farmacologia , Receptores de GABA-A/metabolismo , Benzodiazepinas/farmacologia , Proteínas de Transporte , Ligantes , Potenciação de Longa Duração , Ácido gama-Aminobutírico/farmacologia
5.
Cell Rep ; 42(4): 112295, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36947543

RESUMO

Corticospinal tract (CST) neurons innervate the deep spinal dorsal horn to sustain chronic neuropathic pain. The majority of neurons targeted by the CST are interneurons expressing the transcription factor c-Maf. Here, we used intersectional genetics to decipher the function of these neurons in dorsal horn sensory circuits. We find that excitatory c-Maf (c-MafEX) neurons receive sensory input mainly from myelinated fibers and target deep dorsal horn parabrachial projection neurons and superficial dorsal horn neurons, thereby connecting non-nociceptive input to nociceptive output structures. Silencing c-MafEX neurons has little effect in healthy mice but alleviates mechanical hypersensitivity in neuropathic mice. c-MafEX neurons also receive input from inhibitory c-Maf and parvalbumin neurons, and compromising inhibition by these neurons caused mechanical hypersensitivity and spontaneous aversive behaviors reminiscent of c-MafEX neuron activation. Our study identifies c-MafEX neurons as normally silent second-order nociceptors that become engaged in pathological pain signaling upon loss of inhibitory control.


Assuntos
Neuralgia , Corno Dorsal da Medula Espinal , Animais , Camundongos , Corno Dorsal da Medula Espinal/patologia , Medula Espinal , Células do Corno Posterior/fisiologia , Transmissão Sináptica , Interneurônios/fisiologia , Proteínas Proto-Oncogênicas c-maf
6.
Elife ; 122023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752606

RESUMO

Spinally projecting serotonergic neurons play a key role in controlling pain sensitivity and can either increase or decrease nociception depending on physiological context. It is currently unknown how serotonergic neurons mediate these opposing effects. Utilizing virus-based strategies and Tph2-Cre transgenic mice, we identified two anatomically separated populations of serotonergic hindbrain neurons located in the lateral paragigantocellularis (LPGi) and the medial hindbrain, which respectively innervate the superficial and deep spinal dorsal horn and have contrasting effects on sensory perception. Our tracing experiments revealed that serotonergic neurons of the LPGi were much more susceptible to transduction with spinally injected AAV2retro vectors than medial hindbrain serotonergic neurons. Taking advantage of this difference, we employed intersectional chemogenetic approaches to demonstrate that activation of the LPGi serotonergic projections decreases thermal sensitivity, whereas activation of medial serotonergic neurons increases sensitivity to mechanical von Frey stimulation. Together these results suggest that there are functionally distinct classes of serotonergic hindbrain neurons that differ in their anatomical location in the hindbrain, their postsynaptic targets in the spinal cord, and their impact on nociceptive sensitivity. The LPGi neurons that give rise to rather global and bilateral projections throughout the rostrocaudal extent of the spinal cord appear to be ideally poised to contribute to widespread systemic pain control.


Assuntos
Neurônios Serotoninérgicos , Corno Dorsal da Medula Espinal , Camundongos , Animais , Medula Espinal , Limiar da Dor , Rombencéfalo , Camundongos Transgênicos , Analgésicos
7.
Neuron ; 111(1): 92-105.e5, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36323322

RESUMO

Proper sensing of ambient temperature is of utmost importance for the survival of euthermic animals, including humans. While considerable progress has been made in our understanding of temperature sensors and transduction mechanisms, the higher-order neural circuits processing such information are still only incompletely understood. Using intersectional genetics in combination with circuit tracing and functional neuron manipulation, we identified Kcnip2-expressing inhibitory (Kcnip2GlyT2) interneurons of the mouse spinal dorsal horn as critical elements of a neural circuit that tunes sensitivity to cold. Diphtheria toxin-mediated ablation of these neurons increased cold sensitivity without affecting responses to other somatosensory modalities, while their chemogenetic activation reduced cold and also heat sensitivity. We also show that Kcnip2GlyT2 neurons become activated preferentially upon exposure to cold temperatures and subsequently inhibit spinal nociceptive output neurons that project to the lateral parabrachial nucleus. Our results thus identify a hitherto unknown spinal circuit that tunes cold sensitivity.


Assuntos
Temperatura Baixa , Corno Dorsal da Medula Espinal , Humanos , Camundongos , Animais , Neurônios , Interneurônios/fisiologia , Células do Corno Posterior/fisiologia , Proteínas Interatuantes com Canais de Kv
8.
Brain Pathol ; 33(1): e13099, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698024

RESUMO

Cerebral ischemia is the leading cause for long-term disability and mortality in adults due to massive neuronal death. Currently, there is no pharmacological treatment available to limit progressive neuronal death after stroke. A major mechanism causing ischemia-induced neuronal death is the excessive release of glutamate and the associated overexcitation of neurons (excitotoxicity). Normally, GABAB receptors control neuronal excitability in the brain via prolonged inhibition. However, excitotoxic conditions rapidly downregulate GABAB receptors via a CaMKII-mediated mechanism and thereby diminish adequate inhibition that could counteract neuronal overexcitation and neuronal death. To prevent the deleterious downregulation of GABAB receptors, we developed a cell-penetrating synthetic peptide (R1-Pep) that inhibits the interaction of GABAB receptors with CaMKII. Administration of this peptide to cultured cortical neurons exposed to excitotoxic conditions restored cell surface expression and function of GABAB receptors. R1-Pep did not affect CaMKII expression or activity but prevented its T286 autophosphorylation that renders it autonomously and persistently active. Moreover, R1-Pep counteracted the aberrant downregulation of G protein-coupled inwardly rectifying K+ channels and the upregulation of N-type voltage-gated Ca2+ channels, the main effectors of GABAB receptors. The restoration of GABAB receptors activated the Akt survival pathway and inhibited excitotoxic neuronal death with a wide time window in cultured neurons. Restoration of GABAB receptors and neuroprotective activity of R1-Pep was verified by using brain slices prepared from mice after middle cerebral artery occlusion (MCAO). Treatment with R1-Pep restored normal GABAB receptor expression and GABA receptor-mediated K+ channel currents. This reduced MCAO-induced neuronal excitability and inhibited neuronal death. These results support the hypothesis that restoration of GABAB receptor expression under excitatory conditions provides neuroprotection and might be the basis for the development of a selective intervention to inhibit progressive neuronal death after ischemic stroke.


Assuntos
Isquemia Encefálica , Receptores de GABA-B , Camundongos , Animais , Receptores de GABA-B/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral , Peptídeos , Encéfalo/metabolismo , Ácido gama-Aminobutírico/metabolismo
10.
Neuron ; 110(16): 2571-2587.e13, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35705078

RESUMO

Repeated application of noxious stimuli leads to a progressively increased pain perception; this temporal summation is enhanced in and predictive of clinical pain disorders. Its electrophysiological correlate is "wind-up," in which dorsal horn spinal neurons increase their response to repeated nociceptor stimulation. To understand the genetic basis of temporal summation, we undertook a GWAS of wind-up in healthy human volunteers and found significant association with SLC8A3 encoding sodium-calcium exchanger type 3 (NCX3). NCX3 was expressed in mouse dorsal horn neurons, and mice lacking NCX3 showed normal, acute pain but hypersensitivity to the second phase of the formalin test and chronic constriction injury. Dorsal horn neurons lacking NCX3 showed increased intracellular calcium following repetitive stimulation, slowed calcium clearance, and increased wind-up. Moreover, virally mediated enhanced spinal expression of NCX3 reduced central sensitization. Our study highlights Ca2+ efflux as a pathway underlying temporal summation and persistent pain, which may be amenable to therapeutic targeting.


Assuntos
Cálcio , Trocador de Sódio e Cálcio , Animais , Humanos , Camundongos , Dor , Células do Corno Posterior , Psicofísica , Trocador de Sódio e Cálcio/genética
11.
Front Mol Neurosci ; 15: 832490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548669

RESUMO

Glycine receptors (GlyRs) are the primary mediators of fast inhibitory transmission in the mammalian spinal cord, where they modulate sensory and motor signaling. Mutations in GlyR genes as well as some other genes underlie the hereditary disorder hyperekplexia, characterized by episodic muscle stiffness and exaggerated startle responses. Here, we have investigated pain-related behavior and GlyR expression in the spinal cord of the GlyR deficient mutant mouse spastic (spa). In spastic mice, the GlyR number is reduced due to a ß subunit gene (Glrb) mutation resulting in aberrant splicing of GlyRß transcripts. Via direct physical interaction with the GlyR anchoring protein gephyrin, this subunit is crucially involved in the postsynaptic clustering of heteromeric GlyRs. We show that the mutation differentially affects aspects of the pain-related behavior of homozygous Glrbspa/Glrbspa mice. While response latencies to noxious heat were unchanged, chemically induced pain-related behavior revealed a reduction of the licking time and an increase in flinching in spastic homozygotes during both phases of the formalin test. Mechanically induced nocifensive behavior was reduced in spastic mice, although hind paw inflammation (by zymosan) resulted in allodynia comparable to wild-type mice. Immunohistochemical staining of the spinal cord revealed a massive reduction of dotted GlyRα subunit immunoreactivity in both ventral and dorsal horns, suggesting a reduction of clustered receptors at synaptic sites. Transcripts for all GlyRα subunit variants, however, were not reduced throughout the dorsal horn of spastic mice. These findings suggest that the loss of functional GlyRß subunits and hence synaptically localized GlyRs compromises sensory processing differentially, depending on stimulus modality.

12.
Front Aging Neurosci ; 14: 825996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585865

RESUMO

In primary tauopathies, the deposition of tau neurofibrillary tangles and threads as well as neurodegenerative changes have been found within the brain and spinal cord. While degenerative changes have been intensively studied in the brain using structural magnetic resonance imaging (MRI), MRI studies investigating the spinal cord are still scarce. In the present study, we acquired ex vivo high resolution structural MRI of the cervical spinal cord of 8.5-9 month old hemizygous and homozygous P301L mice and non-transgenic littermates of both genders. We assessed the total cross-sectional area, and the gray and white matter anterior-posterior width and left-right width that are established imaging marker of spinal cord degeneration. We observed significant tissue-specific reductions in these parameters in female P301L mice that were stronger in homozygous than in hemizygous P301L mice, indicating both an effect of gender and transgene expression on cervical spinal cord atrophy. Moreover, atrophy was stronger in the gray matter than in the white matter. Immunohistochemical analysis revealed neurodegenerative and neuroinflammatory changes in the cervical spinal cord in both the gray and white matter of P301L mice. Collectively, our results provide evidence for cervical spinal cord atrophy that may directly contribute to the motor signs associated with tauopathy.

13.
Anesthesiology ; 136(6): 954-969, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35285894

RESUMO

BACKGROUND: Midazolam amplifies synaptic inhibition via different γ-aminobutyric acid type A (GABAA) receptor subtypes defined by the presence of α1-, α2-, α3-, or α5-subunits in the channel complex. Midazolam blocks long-term potentiation and produces postoperative amnesia. The aims of this study were to identify the GABAA receptor subtypes targeted by midazolam responsible for affecting CA1 long-term potentiation and synaptic inhibition in neocortical neurons. METHODS: The effects of midazolam on hippocampal CA1 long-term potentiation were studied in acutely prepared brain slices of male and female mice. Positive allosteric modulation on GABAA receptor-mediated miniature inhibitory postsynaptic currents was investigated in organotypic slice cultures of the mouse neocortex. In both experiments, wild-type mice and GABAA receptor knock-in mouse lines were compared in which α1-, α5-, α1/2/3-, α1/3/5- and α2/3/5-GABAA receptor subtypes had been rendered benzodiazepine-insensitive. RESULTS: Midazolam (10 nM) completely blocked long-term potentiation (mean ± SD, midazolam, 98 ± 11%, n = 14/8 slices/mice vs. control 156 ± 19%, n = 20/12; P < 0.001). Experiments in slices of α1-, α5-, α1/2/3-, α1/3/5-, and α2/3/5-knock-in mice revealed a dominant role for the α1-GABAA receptor subtype in the long-term potentiation suppressing effect. In slices from wild-type mice, midazolam increased (mean ± SD) charge transfer of miniature synaptic events concentration-dependently (50 nM: 172 ± 71% [n = 10/6] vs. 500 nM: 236 ± 54% [n = 6/6]; P = 0.041). In α2/3/5-knock-in mice, charge transfer of miniature synaptic events did not further enhance when applying 500 nM midazolam (50 nM: 171 ± 62% [n = 8/6] vs. 500 nM: 175 ± 62% [n = 6/6]; P = 0.454), indicating two different binding affinities for midazolam to α2/3/5- and α1-subunits. CONCLUSIONS: These results demonstrate a predominant role of α1-GABAA receptors in the actions of midazolam at low nanomolar concentrations. At higher concentrations, midazolam also enhances other GABAA receptor subtypes. α1-GABAA receptors may already contribute at sedative doses to the phenomenon of postoperative amnesia that has been reported after midazolam administration.


Assuntos
Midazolam , Receptores de GABA-A , Amnésia , Animais , Feminino , Potenciação de Longa Duração , Masculino , Camundongos , Midazolam/farmacologia , Transmissão Sináptica , Ácido gama-Aminobutírico
14.
Nat Neurosci ; 25(3): 317-329, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35228700

RESUMO

Benzodiazepines are widely administered drugs to treat anxiety and insomnia. In addition to tolerance development and abuse liability, their chronic use may cause cognitive impairment and increase the risk for dementia. However, the mechanism by which benzodiazepines might contribute to persistent cognitive decline remains unknown. Here we report that diazepam, a widely prescribed benzodiazepine, impairs the structural plasticity of dendritic spines, causing cognitive impairment in mice. Diazepam induces these deficits via the mitochondrial 18 kDa translocator protein (TSPO), rather than classical γ-aminobutyric acid type A receptors, which alters microglial morphology, and phagocytosis of synaptic material. Collectively, our findings demonstrate a mechanism by which TSPO ligands alter synaptic plasticity and, as a consequence, cause cognitive impairment.


Assuntos
Diazepam , Microglia , Receptores de GABA/metabolismo , Animais , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Cognição , Diazepam/farmacologia , Camundongos , Microglia/metabolismo , Proteínas Mitocondriais
15.
J Comp Neurol ; 530(3): 607-626, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34382691

RESUMO

A growing body of experimental evidence shows that glycinergic inhibition plays vital roles in spinal pain processing. In spite of this, however, our knowledge about the morphology, neurochemical characteristics, and synaptic relations of glycinergic neurons in the spinal dorsal horn is very limited. The lack of this knowledge makes our understanding about the specific contribution of glycinergic neurons to spinal pain processing quite vague. Here we investigated the morphology and neurochemical characteristics of glycinergic neurons in laminae I-IV of the spinal dorsal horn using a GlyT2::CreERT2-tdTomato transgenic mouse line. Confirming previous reports, we show that glycinergic neurons are sparsely distributed in laminae I-II, but their densities are much higher in lamina III and especially in lamina IV. First in the literature, we provide experimental evidence indicating that in addition to neurons in which glycine colocalizes with GABA, there are glycinergic neurons in laminae I-II that do not express GABA and can thus be referred to as glycine-only neurons. According to the shape and size of cell bodies and dendritic morphology, we divided the tdTomato-labeled glycinergic neurons into three and six morphological groups in laminae I-II and laminae III-IV, respectively. We also demonstrate that most of the glycinergic neurons co-express neuronal nitric oxide synthase, parvalbumin, the receptor tyrosine kinase RET, and the retinoic acid-related orphan nuclear receptor ß (RORß), but there might be others that need further neurochemical characterization. The present findings may foster our understanding about the contribution of glycinergic inhibition to spinal pain processing.


Assuntos
Neurônios , Corno Dorsal da Medula Espinal , Animais , Glicina , Camundongos , Parvalbuminas , Células do Corno Posterior , Medula Espinal
16.
Life Sci Alliance ; 4(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34433614

RESUMO

General consensus states that immunoglobulins are exclusively expressed by B lymphocytes to form the first line of defense against common pathogens. Here, we provide compelling evidence for the expression of two heavy chain immunoglobulin genes in subpopulations of neurons in the mouse brain and spinal cord. RNA isolated from excitatory and inhibitory neurons through ribosome affinity purification revealed Ighg3 and Ighm transcripts encoding for the constant (Fc), but not the variable regions of IgG3 and IgM. Because, in the absence of the variable immunoglobulin regions, these transcripts lack the canonical transcription initiation site used in lymphocytes, we screened for alternative 5' transcription start sites and identified a novel 5' exon adjacent to a proposed promoter element. Immunohistochemical, Western blot, and in silico analyses strongly support that these neuronal transcripts are translated into proteins containing four Immunoglobulin domains. Our data thus demonstrate the expression of two Fc-encoding genes Ighg3 and Ighm in spinal and supraspinal neurons of the murine CNS and suggest a hitherto unknown function of the encoded proteins.


Assuntos
Sistema Nervoso Central/metabolismo , Regiões Constantes de Imunoglobulina/genética , Neurônios/metabolismo , Animais , Linfócitos B/metabolismo , Sequência de Bases/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Regiões Constantes de Imunoglobulina/imunologia , Domínios de Imunoglobulina/genética , Região Variável de Imunoglobulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética , Transcriptoma/genética
17.
Mol Pain ; 17: 17448069211037887, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34344259

RESUMO

BACKGROUND: The locus coeruleus (LC) is the principal source of noradrenaline (NA) in the central nervous system. Projection neurons in the ventral portion of the LC project to the spinal cord and are considered the main source of spinal NA. To understand the precise physiology of this pathway, it is important to have tools that allow specific genetic access to these descending projections. AAV2retro serotype vectors are a potential tool to transduce these neurons via their axon terminals in the spinal cord, and thereby limit the expression of genetic material to the spinal projections from the LC. Here, we assess the suitability of AAV2retro to target these neurons and investigate strategies to increase their labelling efficiency. RESULTS: We show that the neurons in the LC that project to the spinal dorsal horn are largely resistant to transduction with AAV2retro serotype vectors. Compared to Cholera toxin B (CTb) tracing, AAV2retro.eGFP labelled far fewer neurons within the LC and surrounding regions, particularly within neurons that express tyrosine hydroxylase (TH), the rate-limiting enzyme for NA synthesis. We also show that the sensitivity for transduction of this projection can be increased using AAV2retro.eGFP.cre in ROSA26tdTom reporter mice (23% increase), with a higher proportion of the newly revealed neurons expressing TH compared to those directly labelled with AAV2retro containing an eGFP expression sequence. CONCLUSION: These tracing studies identify limitations in AAV2retro-mediated retrograde transduction of a subset of projection neurons, specifically those that express NA and project to the spinal cord. This is likely to have implications for the study of NA-containing projections as well as other types of projection neuron in the central nervous system.


Assuntos
Neurônios Adrenérgicos , Locus Cerúleo , Animais , Camundongos , Norepinefrina , Terminações Pré-Sinápticas , Medula Espinal , Corno Dorsal da Medula Espinal
18.
Pain ; 162(9): 2436-2445, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34264571

RESUMO

ABSTRACT: Glycinergic neurons and glycine receptors (GlyRs) exert a critical control over spinal nociception. Prostaglandin E2 (PGE2), a key inflammatory mediator produced in the spinal cord in response to peripheral inflammation, inhibits a certain subtype of GlyRs (α3GlyR) that is defined by the inclusion of α3 subunits and distinctly expressed in the lamina II of the spinal dorsal horn, ie, at the site where most nociceptive nerve fibers terminate. Previous work has shown that the hyperalgesic effect of spinal PGE2 is lost in mice lacking α3GlyRs and suggested that this phenotype results from the prevention of PGE2-evoked protein kinase A (PKA)-dependent phosphorylation and inhibition of α3GlyRs. However, direct proof for a contribution of this phosphorylation event to inflammatory hyperalgesia was still lacking. To address this knowledge gap, a phospho-deficient mouse line was generated that carries a serine to alanine point mutation at a strong consensus site for PKA-dependent phosphorylation in the long intracellular loop of the GlyR α3 subunit. These mice showed unaltered spinal expression of GlyR α3 subunits. In behavioral experiments, they showed no alterations in baseline nociception, but were protected from the hyperalgesic effects of intrathecally injected PGE2 and exhibited markedly reduced inflammatory hyperalgesia. These behavioral phenotypes closely recapitulate those found previously in GlyR α3-deficient mice. Our results thus firmly establish the crucial role of PKA-dependent phosphorylation of α3GlyRs in inflammatory hyperalgesia.


Assuntos
Hiperalgesia , Receptores de Glicina/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hiperalgesia/genética , Camundongos , Fosforilação , Receptores de Glicina/genética , Corno Dorsal da Medula Espinal/metabolismo
19.
Biomolecules ; 11(6)2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204137

RESUMO

Diminished inhibitory control of spinal nociception is one of the major culprits of chronic pain states. Restoring proper synaptic inhibition is a well-established rational therapeutic approach explored by several pharmaceutical companies. A particular challenge arises from the need for site-specific intervention to avoid deleterious side effects such as sedation, addiction, or impaired motor control, which would arise from wide-range facilitation of inhibition. Specific targeting of glycinergic inhibition, which dominates in the spinal cord and parts of the hindbrain, may help reduce these side effects. Selective targeting of the α3 subtype of glycine receptors (GlyRs), which is highly enriched in the superficial layers of the spinal dorsal horn, a key site of nociceptive processing, may help to further narrow down pharmacological intervention on the nociceptive system and increase tolerability. This review provides an update on the physiological properties and functions of α3 subtype GlyRs and on the present state of related drug discovery programs.


Assuntos
Nociceptividade/fisiologia , Receptores de Glicina/agonistas , Receptores de Glicina/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Endocanabinoides/farmacologia , Humanos , Nociceptividade/efeitos dos fármacos , Propofol/farmacologia , Estrutura Secundária de Proteína , Receptores de Glicina/química , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Zonisamida/farmacologia
20.
Sci Rep ; 11(1): 5232, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664406

RESUMO

The spinal dorsal horn harbors a sophisticated and heterogeneous network of excitatory and inhibitory neurons that process peripheral signals encoding different sensory modalities. Although it has long been recognized that this network is crucial both for the separation and the integration of sensory signals of different modalities, a systematic unbiased approach to the use of specific neuromodulatory systems is still missing. Here, we have used the translating ribosome affinity purification (TRAP) technique to map the translatomes of excitatory glutamatergic (vGluT2+) and inhibitory GABA and/or glycinergic (vGAT+ or Gad67+) neurons of the mouse spinal cord. Our analyses demonstrate that inhibitory and excitatory neurons are not only set apart, as expected, by the expression of genes related to the production, release or re-uptake of their principal neurotransmitters and by genes encoding for transcription factors, but also by a differential engagement of neuromodulator, especially neuropeptide, signaling pathways. Subsequent multiplex in situ hybridization revealed eleven neuropeptide genes that are strongly enriched in excitatory dorsal horn neurons and display largely non-overlapping expression patterns closely adhering to the laminar and presumably also functional organization of the spinal cord grey matter.


Assuntos
Neuropeptídeos/genética , Células do Corno Posterior/metabolismo , Biossíntese de Proteínas , Medula Espinal/metabolismo , Animais , Regulação da Expressão Gênica/genética , Glutamato Descarboxilase/genética , Substância Cinzenta/metabolismo , Humanos , Camundongos , Neuropeptídeos/biossíntese , Neurotransmissores/genética , Transdução de Sinais/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética , Ácido gama-Aminobutírico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...