Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38730902

RESUMO

This study experimentally investigates the influence of metal chips and glass fibers on the mode I fracture toughness, energy absorption, and tensile strength of polymer concretes (PCs) manufactured by waste aggregates. A substantial portion of the materials employed in manufacturing and enhancing the tested polymer concrete are sourced from waste material. To achieve this, semi-circular bend (SCB) samples were fabricated, both with and without a central crack, to analyze the strength and fracture behavior of the composite specimens. The specimens incorporated varying weight percentages comprising 50 wt% coarse mineral aggregate, 25 wt% fine mineral aggregate, and 25 wt% epoxy resin. Metal chips and glass fibers were introduced at 2, 4, and 8 wt% of the PC material to enhance its mechanical response. Subsequently, the specimens underwent 3-point bending tests to obtain tensile strength, mode I fracture toughness, and energy absorption up to failure. The findings revealed that adding 4% brass chips along with 4% glass fibers significantly enhanced energy absorption (by a factor of 3.8). However, using 4% glass fibers alone improved it even more (by a factor of 10.5). According to the results, glass fibers have a greater impact than brass chips. Introducing 8% glass fibers enhanced the fracture energy by 92%. However, in unfilled samples, aggregate fracture and separation hindered crack propagation, and filled samples presented added barriers, resulting in multiple-site cracking.

2.
Materials (Basel) ; 16(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36902925

RESUMO

In this study, the effect of through-the-thickness delamination plane position on the R-curve behavior of end-notch-flexure (ENF) specimens was investigated using experimental and numerical procedures. From the experimental point of view, plain-woven E-glass/epoxy ENF specimens with two different delamination planes, i.e., [012//012] and [017//07], were manufactured by hand lay-up method. Afterward, fracture tests were conducted on the specimens by aiding ASTM standards. The main three parameters of R-curves, including the initiation and propagation of mode II interlaminar fracture toughness and the fracture process zone length, were analyzed. The experimental results revealed that changing the delamination position in ENF specimen has a negligible effect on the initiation and steady steady-state toughness values of delamination. In the numerical part, the virtual crack closure technique (VCCT) was used in order to analyze the imitation delamination toughness as well as the contribution of another mode on the obtained delamination toughness. The numerical results indicated that by choosing an appropriate value of cohesive parameters, the trilinear cohesive zone model (CZM) is capable of predicting the initiation as well as propagation of the ENF specimens. Finally, the damage mechanisms at the delaminated interface were investigated with microscopic images taken using a scanning electron microscope.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...