Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(4): 747-760, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232326

RESUMO

Modifying the optical and electronic properties of crystalline organic thin films is of great interest for improving the performance of modern organic semiconductor devices. Therein, the statistical mixing of molecules to form a solid solution provides an opportunity to fine-tune optical and electronic properties. Unfortunately, the diversity of intermolecular interactions renders mixed organic crystals highly complex, and a holistic picture is still lacking. Here, we report a study of the optical absorption properties in solid solutions of pentacene and tetracene, two prototypical organic semiconductors. In the mixtures, the optical properties can be continuously modified by statistical mixing at the molecular level. Comparison with time-dependent density functional theory calculations on occupationally disordered clusters unravels the electronic origin of the low energy optical transitions. The disorder partially relaxes the selection rules, leading to additional optical transitions that manifest as optical broadening. Furthermore, the contribution of diabatic charge-transfer states is modified in the mixtures, reducing the observed splitting in the 0-0 vibronic transition. Additional comparisons with other blended systems generalize our results and indicate that changes in the polarizability of the molecular environment in organic thin-film blends induce shifts in the absorption spectrum.

2.
J Am Chem Soc ; 144(45): 20610-20619, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318748

RESUMO

Vibronic coupling has been proposed to play a decisive role in promoting ultrafast singlet fission (SF), the conversion of a singlet exciton into two triplet excitons. Its inherent complexity is challenging to explore, both from a theoretical and an experimental point of view, due to the variety of potentially relevant vibrational modes. Here, we report a study on blends of the prototypical SF chromophore pentacene in which we engineer the polarizability of the molecular environment to scan the energy of the excited singlet state (S1) continuously over a narrow energy range, covering vibrational sublevels of the triplet-pair state (1(TT)). Using femtosecond transient absorption spectroscopy, we probe the dependence of the SF rate on energetic resonance between vibronic states and, by comparison with simulation, identify vibrational modes near 1150 cm-1 as key in facilitating ultrafast SF in pentacene.

3.
Nat Commun ; 12(1): 5149, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446726

RESUMO

The fission of singlet excitons into triplet pairs in organic materials holds great technological promise, but the rational application of this phenomenon is hampered by a lack of understanding of its complex photophysics. Here, we use the controlled introduction of vacancies by means of spacer molecules in tetracene and pentacene thin films as a tuning parameter complementing experimental observables to identify the operating principles of different singlet fission pathways. Time-resolved spectroscopic measurements in combination with microscopic modelling enables us to demonstrate distinct scenarios, resulting from different singlet-to-triplet pair energy alignments. For pentacene, where fission is exothermic, coherent mixing between the photoexcited singlet and triplet-pair states is promoted by vibronic resonances, which drives the fission process with little sensitivity to the vacancy concentration. Such vibronic resonances do not occur for endothermic materials such as tetracene, for which we find fission to be fully incoherent; a process that is shown to slow down with increasing vacancy concentration.

4.
J Phys Chem Lett ; 12(31): 7453-7458, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34339199

RESUMO

Singlet fission (SF), the photophysical process in which one singlet exciton is transformed into two triplets, depends inter alia on the coupling of electronic states. Here, we use fluorination and the resulting changes in partial charge distribution across the chromophore backbone as a particularly powerful tool to control this parameter in pentacene. We find that the introduction of a permanent dipole moment leads to an enhanced coupling of Frenkel exciton and charge transfer states and to an increased SF rate which we probed using ultrafast transient absorption spectroscopy. These findings are contrasted with H-aggregate formation and a significantly reduced triplet-pair state lifetime in a fluorinated pentacene for which the different partial charge distribution leads to a negligible dipole moment.

5.
J Appl Crystallogr ; 54(Pt 1): 203-210, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33833648

RESUMO

Many polymorphic crystal structures of copper phthalocyanine (CuPc) have been reported over the past few decades, but despite its manifold applicability, the structure of the frequently mentioned α polymorph remained unclear. The base-centered unit cell (space group C2/c) suggested in 1966 was ruled out in 2003 and was replaced by a primitive triclinic unit cell (space group P 1). This study proves unequivocally that both α structures coexist in vacuum-deposited CuPc thin films on native silicon oxide by reciprocal space mapping using synchrotron radiation in grazing incidence. The unit-cell parameters and the space group were determined by kinematic scattering theory and provide possible molecular arrangements within the unit cell of the C2/c structure by excluded-volume considerations. In situ X-ray diffraction experiments and ex situ atomic force microscopy complement the experimental data further and provide insight into the formation of a smooth thin film by a temperature-driven downward diffusion of CuPc molecules during growth.

6.
ACS Appl Mater Interfaces ; 12(47): 53547-53556, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33167608

RESUMO

Archetypal donor-acceptor (D-A) interfaces composed of perfluoropentacene (PFP) and pentacene (PEN) are examined for charge transfer (CT) state formation and energetics as a function of their respective molecular configuration. To exclude morphological interference, our structural as well as highly sensitive differential reflectance spectroscopy studies were carried out on PFP thin films epitaxially grown on PEN(001) single-crystal facets. Whereas the experimental data supported by complementary theoretical calculations confirm the formation of a strong CT state in the case of a cofacial PFP-PEN stacking, CT formation is energetically less favorable and thus absent for the corresponding head-to-tail configuration as disclosed for the first time. In view of technological implementations, the knowledge gained on the single-crystal references is transferred to thin-film diodes composed of either stacked PFP/PEN bilayers or mixed PFP:PEN heterojunction interfaces. As demonstrated, their electronic and electroluminescent behavior can be consistently described by the absence or presence of interfacial CT states. Thus, our results hint at the thorough design of D-A interfaces to achieve the highest device performances.

7.
Angew Chem Int Ed Engl ; 59(45): 19966-19973, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32761935

RESUMO

Heterofission is a photophysical process of fundamental and applied interest whereby an excited singlet state is converted into two triplets on chemically distinct chromophores. The potential of this process lies in the tuning of both the optical band gap and the splitting between singlet and triplet energies. Herein, we report the time-domain observation of heterofission in mixed thin films of the prototypical singlet fission chromophores pentacene and tetracene using excitation wavelengths above and below the tetracene band gap. We found a time constant of 26 ps for endothermic heterofission of a singlet exciton on pentacene in blends with low pentacene fractions, which was outcompeted by pentacene homofission for increasing pentacene concentrations. Direct excitation of tetracene lead to fast energy transfer to pentacene and subsequent singlet fission, which prevented homo- or heterofission of a singlet exciton on tetracene.

8.
Chemistry ; 26(15): 3420-3434, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-31985891

RESUMO

The properties as well as solid-state structures, singlet fission, and organic field-effect transistor (OFET) performance of three tetrafluoropentacenes (1,4,8,11: 10, 1,4,9,10: 11, 2,3,9,10: 12) are compared herein. The novel compounds 10 and 11 were synthesized in high purity from the corresponding 6,13-etheno-bridged precursors by reaction with dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate at elevated temperatures. Although most of the molecular properties of the compounds are similar, their chemical reactivity and crystal structures differ considerably. Isomer 10 undergoes the orbital symmetry forbidden thermal [4+4] dimerization, whereas 11 and 12 are much less reactive. The isomers 11 and 12 crystallize in a herringbone motif, but 10 prefers π-π stacking. Although the energy of the first electric dipole-allowed optical transition varies only within 370 cm-1 (0.05 eV) for the neutral compounds, this amounts to roughly 1600 cm-1 (0.20 eV) for radical cations and 1300 cm-1 (0.16 eV) for dications. Transient spectroscopy of films of 11 and 12 reveals singlet-fission time constants (91±11, 73±3 fs, respectively) that are shorter than for pentacene (112±9 fs). OFET devices constructed from 11 and 12 show close to ideal thin-film transistor (TFT) characteristics with electron mobilities of 2×10-3 and 6×10-2  cm2 V-1 s-1 , respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...