Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 257: 153334, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33373827

RESUMO

Roots vary their permeability to aid radial transport of solutes towards xylem vessels in response to nutritional cues. Nitrogen (N) depletion was previously shown to induce early suberization of endodermal cell walls and reduce hydraulic conductivity of barley roots suggesting reduced apoplastic transport of ions (Armand et al., 2019). Suberization may also limit transcellular ion movement by blocking access to transporters (Barberon et al., 2016). The aim of this study was to confirm that N depletion induced suberization in the roots of barley and demonstrate that this was a specific effect in response to NO3- depletion. Furthermore, in roots with early and enhanced suberization, we assessed their ability for transporter-mediated NO3- influx. N depletion induced lateral root elongation and early and enhanced endodermal suberization of the seminal root of each genotype. Both root to shoot NO3- translocation and net N uptake was half that of plants supplied with steady-state NO3-. Genes with predicted functions in suberin synthesis (HvHORST) and NO3- transport (HvNRT2.2) were induced under N-deplete conditions. N-deplete roots had a higher capacity for high-affinity NO3- influx in early suberized roots than under optimal NO3-. In conclusion, NO3- depletion induced early and enhanced suberization in the roots of barley, however, suberization did not restrict transcellular NO3- transport.


Assuntos
Endoderma/fisiologia , Hordeum/metabolismo , Lipídeos/fisiologia , Nitratos/metabolismo , Nitrogênio/metabolismo , Transporte Biológico , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...