Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Chem Lett ; 19(2): 1773-1777, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33551702

RESUMO

In the absence of a vaccine, preventing the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the primary means to reduce the impact of the 2019 coronavirus disease (COVID-19). Multiple studies have reported the presence of SARS-CoV-2 genetic material on surfaces suggesting that fomite transmission of SARS-CoV-2 is feasible. High temperature inactivation of virus has been previously suggested, but not shown. In the present study, we investigated the environmental stability of SARS-CoV-2 in a clinically relevant matrix dried onto stainless steel at a high temperature. The results show that at 54.5 °C, the virus half-life was 10.8 ± 3.0 min and the time for a 90% decrease in infectivity was 35.4 ± 9.0 min. These findings suggest that in instances where the environment can reach temperatures of at least 54.5 °C, such as in vehicle interior cabins when parked in warmer ambient air, that the potential for exposure to infectious virus on surfaces could be decreased substantially in under an hour.

2.
mSphere ; 5(4)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611701

RESUMO

Coronavirus disease 2019 (COVID-19) was first identified in China in late 2019 and is caused by newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Previous studies had reported the stability of SARS-CoV-2 in cell culture media and deposited onto surfaces under a limited set of environmental conditions. Here, we broadly investigated the effects of relative humidity, temperature, and droplet size on the stability of SARS-CoV-2 in a simulated clinically relevant matrix dried on nonporous surfaces. The results show that SARS-CoV-2 decayed more rapidly when either humidity or temperature was increased but that droplet volume (1 to 50 µl) and surface type (stainless steel, plastic, or nitrile glove) did not significantly impact decay rate. At room temperature (24°C), virus half-life ranged from 6.3 to 18.6 h depending on the relative humidity but was reduced to 1.0 to 8.9 h when the temperature was increased to 35°C. These findings suggest that a potential for fomite transmission may persist for hours to days in indoor environments and have implications for assessment of the risk posed by surface contamination in indoor environments.IMPORTANCE Mitigating the transmission of SARS-CoV-2 in clinical settings and public spaces is critically important to reduce the number of COVID-19 cases while effective vaccines and therapeutics are under development. SARS-CoV-2 transmission is thought to primarily occur through direct person-to-person transfer of infectious respiratory droplets or through aerosol-generating medical procedures. However, contact with contaminated surfaces may also play a significant role. In this context, understanding the factors contributing to SARS-CoV-2 persistence on surfaces will enable a more accurate estimation of the risk of contact transmission and inform mitigation strategies. To this end, we have developed a simple mathematical model that can be used to estimate virus decay on nonporous surfaces under a range of conditions and which may be utilized operationally to identify indoor environments in which the virus is most persistent.


Assuntos
Fômites/virologia , Umidade , Modelos Teóricos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Temperatura , Inativação de Vírus , Poluição do Ar em Ambientes Fechados , COVID-19 , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Meia-Vida , Humanos , Pandemias/prevenção & controle , Plásticos , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Porosidade , Saliva/química , Saliva/virologia , Aço Inoxidável , Propriedades de Superfície
3.
Nat Microbiol ; 5(1): 166-180, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31768029

RESUMO

Clostridioides (formerly Clostridium) difficile is a leading cause of healthcare-associated infections. Although considerable progress has been made in the understanding of its genome, the epigenome of C. difficile and its functional impact has not been systematically explored. Here, we perform a comprehensive DNA methylome analysis of C. difficile using 36 human isolates and observe a high level of epigenomic diversity. We discovered an orphan DNA methyltransferase with a well-defined specificity, the corresponding gene of which is highly conserved across our dataset and in all of the approximately 300 global C. difficile genomes examined. Inactivation of the methyltransferase gene negatively impacts sporulation, a key step in C. difficile disease transmission, and these results are consistently supported by multiomics data, genetic experiments and a mouse colonization model. Further experimental and transcriptomic analyses suggest that epigenetic regulation is associated with cell length, biofilm formation and host colonization. These findings provide a unique epigenetic dimension to characterize medically relevant biological processes in this important pathogen. This study also provides a set of methods for comparative epigenomics and integrative analysis, which we expect to be broadly applicable to bacterial epigenomic studies.


Assuntos
Clostridioides difficile/enzimologia , Clostridioides difficile/fisiologia , Clostridioides difficile/patogenicidade , Metilases de Modificação do DNA/metabolismo , Epigênese Genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridioides difficile/genética , Infecções por Clostridium/microbiologia , Cricetinae , Metilação de DNA , Metilases de Modificação do DNA/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Epigenoma , Regulação Bacteriana da Expressão Gênica , Variação Genética , Genoma Bacteriano/genética , Humanos , Camundongos , Mutação , Motivos de Nucleotídeos , Filogenia , Elementos Reguladores de Transcrição/genética , Esporos Bacterianos/genética , Esporos Bacterianos/fisiologia , Especificidade por Substrato
4.
Open Forum Infect Dis ; 6(9): ofz302, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31660395

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening infections in both community and hospital settings and is a leading cause of health care-associated infections (HAIs). We sought to describe the molecular epidemiological landscape of patients with MRSA bloodstream infections (BSIs) at an urban medical center by evaluating the clinical characteristics associated with the two dominant endemic clones. METHODS: Comprehensive clinical data from the electronic health records of 227 hospitalized patients ≥18 years old with MRSA BSI over a 33-month period in New York City were collected. The descriptive epidemiology and mortality associated with the two dominant clones were compared using logistic regression. RESULTS: Molecular analysis revealed that 91% of all single-patient MRSA BSIs were due to two equally represented genotypes, clonal complex (CC) 5 (n = 117) and CC8 (n = 110). MRSA BSIs were associated with a 90-day mortality rate of 27%. CC8 caused disease more frequently in younger age groups (56 ± 17 vs 67 ± 17 years old; P < .001) and in those of nonwhite race (odds ratio [OR], 3.45; 95% confidence interval [CI], 1.51-7.87; P = .003), with few other major distinguishing features. Morbidity and mortality also did not differ significantly between the two clones. CC8 caused BSIs more frequently in the setting of peripheral intravenous catheters (OR, 5.96; 95% CI, 1.51-23.50; P = .01). CONCLUSIONS: The clinical features distinguishing dominant MRSA clones continue to converge. The association of CC8 with peripheral intravenous catheter infections underscores the importance of classical community clones causing hospital-onset infections. Ongoing monitoring and analysis of the dynamic epidemiology of this endemic pathogen are crucial to inform management and prevent disease.

6.
Case Rep Infect Dis ; 2017: 5474916, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29527364

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that rarely causes pneumonia in otherwise healthy patients. We describe a case of community-acquired P. aeruginosa pneumonia in a previously healthy individual who likely acquired the infection from a home humidifier.

7.
Mol Cell Pediatr ; 3(1): 14, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27002817

RESUMO

The maintenance of oxygen homeostasis in human tissues is mediated by several cellular adaptations in response to low-oxygen stress, called hypoxia. A decrease in tissue oxygen levels is initially counteracted by increasing local blood flow to overcome diminished oxygenation and avoid hypoxic stress. However, studies have shown that the physiological oxygen concentrations in several tissues are much lower than atmospheric (normoxic) conditions, and the oxygen supply is finely regulated in individual cell types. The gastrointestinal tract has been described to subsist in a state of physiologically low oxygen level and is thus depicted as a tissue in the state of constant low-grade inflammation. The intestinal epithelial cell layer plays a vital role in the immune response to inflammation and infections that occur within the intestinal tissue and is involved in many of the adaptation responses to hypoxic stress. This is especially relevant in the context of inflammatory disorders, such as inflammatory bowel disease (IBD). Therefore, this review aims to describe the intestinal epithelial cellular response to hypoxia and the consequences for host interactions with invading gastrointestinal bacterial pathogens.

8.
PLoS One ; 11(1): e0146103, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731748

RESUMO

Yersinia enterocolitica is a major cause of human yersiniosis, with enterocolitis being a typical manifestation. These bacteria can cross the intestinal mucosa, and invade eukaryotic cells by binding to host ß1 integrins, a process mediated by the bacterial effector protein invasin. This study examines the role of hypoxia on the internalization of Y. enterocolitica into intestinal epithelial cells, since the gastrointestinal tract has been shown to be physiologically deficient in oxygen levels (hypoxic), especially in cases of infection and inflammation. We show that hypoxic pre-incubation of Caco-2 cells resulted in significantly decreased bacterial internalization compared to cells grown under normoxia. This phenotype was absent after functionally blocking host ß1 integrins as well as upon infection with an invasin-deficient Y. enterocolitica strain. Furthermore, downstream phosphorylation of the focal adhesion kinase was also reduced under hypoxia after infection. In good correlation to these data, cells grown under hypoxia showed decreased protein levels of ß1 integrins at the apical cell surface whereas the total protein level of the hypoxia inducible factor (HIF-1) alpha was elevated. Furthermore, treatment of cells with the HIF-1 α stabilizer dimethyloxalylglycine (DMOG) also reduced invasion and decreased ß1 integrin protein levels compared to control cells, indicating a potential role for HIF-1α in this process. These results suggest that hypoxia decreases invasin-integrin-mediated internalization of Y. enterocolitica into intestinal epithelial cells by reducing cell surface localization of host ß1 integrins.


Assuntos
Adesinas Bacterianas/metabolismo , Hipóxia/metabolismo , Integrina beta1/metabolismo , Mucosa Intestinal/microbiologia , Yersiniose/metabolismo , Yersinia enterocolitica/fisiologia , Células CACO-2 , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Hipóxia/microbiologia , Mucosa Intestinal/metabolismo , Oxigênio/metabolismo , Yersiniose/microbiologia
9.
FEMS Microbiol Lett ; 362(23): fnv192, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26459885

RESUMO

Neutrophil extracellular trap (NET) formation is described as a tool of the innate host defence to fight against invading pathogens. Fibre-like DNA structures associated with proteins such as histones, cell-specific enzymes and antimicrobial peptides are released, thereby entrapping invading pathogens. It has been reported that several bacteria are able to degrade NETs by nucleases and thus evade the NET-mediated entrapment. Here we studied the ability of three different Yersinia serotypes to induce and degrade NETs. We found that the common Yersinia enterocolitica serotypes O:3, O:8 and O:9 were able to induce NETs in human blood-derived neutrophils during the first hour of co-incubation. At later time points, the NET amount was reduced, suggesting that degradation of NETs has occurred. This was confirmed by NET degradation assays with phorbol-myristate-acetate-pre-stimulated neutrophils. In addition, we found that the Yersinia supernatants were able to degrade purified plasmid DNA. The absence of Ca(2+) and Mg(2+) ions, but not that of a protease inhibitor cocktail, completely abolished NET degradation. We therefore postulate that Y. enterocolitica produces Ca(2+)/Mg(2+)-dependent NET-degrading nucleases as shown for some Gram-positive pathogens.


Assuntos
Armadilhas Extracelulares/metabolismo , Yersinia enterocolitica/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/microbiologia , Humanos , Imunidade Inata , Magnésio/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Alinhamento de Sequência , Sorogrupo , Yersinia enterocolitica/classificação , Yersinia enterocolitica/enzimologia
10.
Hypoxia (Auckl) ; 3: 53-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27774482

RESUMO

PURPOSE: Measuring oxygen levels in three different systems of Caco-2 cell culture. METHODS: Caco-2 cells were cultured in three different systems, using conventional polystyrene 24-well plates, special 24-well gas permeable plates, or on membrane inserts in conventional plates. Optical sensor spots were used to measure dissolved O2 levels in these cultured cells over the course of 6 days under normoxia (143 mmHg) and for 6 hours under hypoxia (7 mmHg). Western blot analysis was used to determine the protein levels of hypoxia-inducible factor 1α (HIF-1α) in the different cultures. RESULTS: All culture systems displayed lower O2 levels over time than expected when cultured under normoxia conditions. On average, O2 levels reached as low as 25 mmHg in 24-well plates but remained at 97 and 117 mmHg in gas permeable plates and membrane inserts, respectively. Under hypoxia, 1 mL cell cultures equilibrated to 7 mmHg O2 within the first 60 minutes and dropped to 0.39 and 0.61 mmHg O2 in 24-well and gas permeable plates, respectively, after the 6-hour incubation period. Cultures in membrane inserts did not equilibrate to 7 mmHg by the end of the 6-hour incubation period, where the lowest O2 measurements reached 23.12 mmHg. Western blots of HIF-1α protein level in the whole cell lysates of the different Caco-2 cultures revealed distinct stabilization of HIF-1α after hypoxic incubation for 1, 2, and 4 hours in 24-well plates as well as gas permeable plates. For membrane inserts, notable HIF-1α was seen after 4 hours of hypoxic incubation. CONCLUSION: Cellular oxygen depletion was achieved in different hypoxic Caco-2 culture systems. However, different oxygen levels comparing different culture systems indicate that O2 level should be carefully considered in oxygen-dependent experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...