Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 218(4): 1462-1477, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29635689

RESUMO

Plant temperature responses vary geographically, reflecting thermally contrasting habitats and long-term species adaptations to their climate of origin. Plants also can acclimate to fast temporal changes in temperature regime to mitigate stress. Although plant photosynthetic responses are known to acclimate to temperature, many global models used to predict future vegetation and climate-carbon interactions do not include this process. We quantify the global and regional impacts of biogeographical variability and thermal acclimation of temperature response of photosynthetic capacity on the terrestrial carbon (C) cycle between 1860 and 2100 within a coupled climate-carbon cycle model, that emulates 22 global climate models. Results indicate that inclusion of biogeographical variation in photosynthetic temperature response is most important for present-day and future C uptake, with increasing importance of thermal acclimation under future warming. Accounting for both effects narrows the range of predictions of the simulated global land C storage in 2100 across climate projections (29% and 43% globally and in the tropics, respectively). Contrary to earlier studies, our results suggest that thermal acclimation of photosynthetic capacity makes tropical and temperate C less vulnerable to warming, but reduces the warming-induced C uptake in the boreal region under elevated CO2 .


Assuntos
Carbono/metabolismo , Geografia , Fotossíntese , Temperatura , Dióxido de Carbono/metabolismo , Simulação por Computador , Ecossistema , Luz , Modelos Teóricos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Solo , Fatores de Tempo
2.
Ecol Evol ; 5(21): 5057-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26640682

RESUMO

Population-level studies of how tit species (Parus spp.) track the changing phenology of their caterpillar food source have provided a model system allowing inference into how populations can adjust to changing climates, but are often limited because they implicitly assume all individuals experience similar environments. Ecologists are increasingly using satellite-derived data to quantify aspects of animals' environments, but so far studies examining phenology have generally done so at large spatial scales. Considering the scale at which individuals experience their environment is likely to be key if we are to understand the ecological and evolutionary processes acting on reproductive phenology within populations. Here, we use time series of satellite images, with a resolution of 240 m, to quantify spatial variation in vegetation green-up for a 385-ha mixed-deciduous woodland. Using data spanning 13 years, we demonstrate that annual population-level measures of the timing of peak abundance of winter moth larvae (Operophtera brumata) and the timing of egg laying in great tits (Parus major) and blue tits (Cyanistes caeruleus) is related to satellite-derived spring vegetation phenology. We go on to show that timing of local vegetation green-up significantly explained individual differences in tit reproductive phenology within the population, and that the degree of synchrony between bird and vegetation phenology showed marked spatial variation across the woodland. Areas of high oak tree (Quercus robur) and hazel (Corylus avellana) density showed the strongest match between remote-sensed vegetation phenology and reproductive phenology in both species. Marked within-population variation in the extent to which phenology of different trophic levels match suggests that more attention should be given to small-scale processes when exploring the causes and consequences of phenological matching. We discuss how use of remotely sensed data to study within-population variation could broaden the scale and scope of studies exploring phenological synchrony between organisms and their environment.

3.
Philos Trans A Math Phys Eng Sci ; 369(1934): 137-60, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21115517

RESUMO

The future of tropical forests has become one of the iconic issues in climate-change science. A number of studies that have explored this subject have tended to focus on the output from one or a few climate models, which work at low spatial resolution, whereas society and conservation-relevant assessment of potential impacts requires a finer scale. This study focuses on the role of climate on the current and future distribution of humid tropical forests (HTFs). We first characterize their contemporary climatological niche using annual rainfall and maximum climatological water stress, which also adequately describe the current distribution of other biomes within the tropics. As a first-order approximation of the potential extent of HTFs in future climate regimes defined by global warming of 2°C and 4°C, we investigate changes in the niche through a combination of climate-change anomaly patterns and higher resolution (5 km) maps of current climatology. The climate anomalies are derived using data from 17 coupled Atmosphere-Ocean General Circulation Models (AOGCMs) used in the Fourth Assessment of the Intergovernmental Panel for Climate Change. Our results confirm some risk of forest retreat, especially in eastern Amazonia, Central America and parts of Africa, but also indicate a potential for expansion in other regions, for example around the Congo Basin. The finer spatial scale enabled the depiction of potential resilient and vulnerable zones with practically useful detail. We further refine these estimates by considering the impact of new environmental regimes on plant water demand using the UK Met Office land-surface scheme (of the HadCM3 AOGCM). The CO(2)-related reduction in plant water demand lowers the risk of die-back and can lead to possible niche expansion in many regions. The analysis presented here focuses primarily on hydrological determinants of HTF extent. We conclude by discussing the role of other factors, notably the physiological effects of higher temperature.


Assuntos
Mudança Climática , Clima Tropical , Atmosfera , Dióxido de Carbono/química , Conservação dos Recursos Naturais , Planeta Terra , Ecologia , Aquecimento Global , Modelos Teóricos , Oceanos e Mares , Risco , Temperatura , Árvores , Abastecimento de Água
4.
J Anim Ecol ; 78(4): 778-88, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19383076

RESUMO

1. In populations where inbreeding causes a substantial decrease in fitness, selection is expected to favour the evolution of inbreeding avoidance behaviours. Elsewhere we have documented substantial inbreeding depression and the importance of dispersal in avoiding inbreeding in a long-term population study of the great tit Parus major in Wytham (UK). In this study, we ask whether individuals from this population actively avoid mating with kin. 2. We generated four contrasting models of random mate choice that assumed varying levels of mate availability in each year of the data set. This allowed us to compare observed and simulated distributions and frequencies of inbreeding coefficients from 41 years of breeding data. 3. We found no evidence that birds avoid mating with related partners. Our results show that birds breed more often with relatives than expected under null models of mate choice that lack population structure, but not when compared to scenarios where birds were mated with their nearest neighbours. Pedigree-derived F(IS) values were positive for all scenarios of random mating, confirming the lack of inbreeding avoidance in this population. 4. These results imply the existence of spatial genetic structure where related individuals occur closer together than nonrelated individuals while breeding, and suggest that the relatedness between breeding individuals of the opposite sex decreases with distance. Thus, while dispersal from the natal site decreases the number of relatives around an individual, it does not completely homogenize genetic structure. 5. We show that brother-sister pairs are observed more often than under any scenario of random mating, suggesting that not only birds do not avoid mating with kin, but also that the apparently maladaptive choice of mating with a sibling is made more often than expected. 6. Our results provide no evidence to suggest that individuals actively avoid kin. In fact, some types of inbreeding occur more often than expected, despite the substantial fitness costs. The observed lack of inbreeding avoidance is in agreement with other studies of non-cooperatively breeding passerine birds, although the higher than expected frequency of sibling mating remains a puzzling result.


Assuntos
Endogamia , Passeriformes/genética , Passeriformes/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Masculino , Modelos Biológicos , Dinâmica Populacional , Fatores de Tempo
5.
Science ; 323(5919): 1344-7, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19265020

RESUMO

Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.


Assuntos
Biomassa , Secas , Ecossistema , Árvores , Atmosfera , Brasil , Carbono , Dióxido de Carbono , Clima , América do Sul , Árvores/crescimento & desenvolvimento , Clima Tropical
6.
Proc Natl Acad Sci U S A ; 106(49): 20610-5, 2009 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19218454

RESUMO

We examine the evidence for the possibility that 21st-century climate change may cause a large-scale "dieback" or degradation of Amazonian rainforest. We employ a new framework for evaluating the rainfall regime of tropical forests and from this deduce precipitation-based boundaries for current forest viability. We then examine climate simulations by 19 global climate models (GCMs) in this context and find that most tend to underestimate current rainfall. GCMs also vary greatly in their projections of future climate change in Amazonia. We attempt to take into account the differences between GCM-simulated and observed rainfall regimes in the 20th century. Our analysis suggests that dry-season water stress is likely to increase in E. Amazonia over the 21st century, but the region tends toward a climate more appropriate to seasonal forest than to savanna. These seasonal forests may be resilient to seasonal drought but are likely to face intensified water stress caused by higher temperatures and to be vulnerable to fires, which are at present naturally rare in much of Amazonia. The spread of fire ignition associated with advancing deforestation, logging, and fragmentation may act as nucleation points that trigger the transition of these seasonal forests into fire-dominated, low biomass forests. Conversely, deliberate limitation of deforestation and fire may be an effective intervention to maintain Amazonian forest resilience in the face of imposed 21st-century climate change. Such intervention may be enough to navigate E. Amazonia away from a possible "tipping point," beyond which extensive rainforest would become unsustainable.


Assuntos
Mudança Climática , Extinção Biológica , Modelos Biológicos , Chuva , Árvores/fisiologia , Atmosfera , Dióxido de Carbono/análise , Secas , Temperatura , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...