Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 524(1): 74-89, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26053997

RESUMO

Retinal progenitors in the circumferential marginal zone (CMZ) and Müller glia-derived progenitors have been well described for the eyes of fish, amphibians, and birds. However, there is no information regarding a CMZ and the nature of retinal glia in species phylogenetically bridging amphibians and birds. The purpose of this study was to examine the retinal glia and investigate whether a CMZ is present in the eyes of reptilian species. We used immunohistochemical analyses to study retinal glia, neurons that could influence CMZ progenitors, the retinal margin, and the nonpigmented epithelium of ciliary body of garter snakes, queen snakes, anole lizards, snapping turtles, and painted turtles. We compare our observations on reptile eyes to the CMZ and glia of fish, amphibians, and birds. In all species, Sox9, Pax6, and the glucocorticoid receptor are expressed by Müller glia and cells at the retinal margin. However, proliferating cells were found only in the CMZ of turtles and not in the eyes of anoles and snakes. Similar to eyes of chickens, the retinal margin in turtles contains accumulations of GLP1/glucagonergic neurites. We find that filamentous proteins, vimentin and GFAP, are expressed by Müller glia, but have different patterns of subcellular localization in the different species of reptiles. We provide evidence that the reptile retina may contain nonastrocytic inner retinal glial cells, similar to those described in the avian retina. We conclude that the retinal glia, glucagonergic neurons, and CMZ of turtles appear to be most similar to those of fish, amphibians, and birds.


Assuntos
Glucagon/metabolismo , Lagartos/anatomia & histologia , Neuroglia/citologia , Retina/citologia , Serpentes/anatomia & histologia , Tartarugas/anatomia & histologia , Anfíbios/anatomia & histologia , Anfíbios/metabolismo , Animais , Proliferação de Células , Galinhas/anatomia & histologia , Galinhas/metabolismo , Feminino , Peixes/anatomia & histologia , Peixes/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Lagartos/metabolismo , Masculino , Neuroglia/metabolismo , Retina/metabolismo , Serpentes/metabolismo , Especificidade da Espécie , Tartarugas/metabolismo
2.
Exp Neurol ; 273: 114-25, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26272753

RESUMO

Reactive microglia and macrophages are prevalent in damaged retinas. Glucocorticoid signaling is known to suppress inflammation and the reactivity of microglia and macrophages. In the vertebrate retina, the glucocorticoid receptor (GCR) is known to be activated and localized to the nuclei of Müller glia (Gallina et al., 2014). Accordingly, we investigated how signaling through GCR influences the survival of neurons using the chick retina in vivo as a model system. We applied intraocular injections of GCR agonist or antagonist, assessed microglial reactivity, and the survival of retinal neurons following different damage paradigms. Microglial reactivity was increased in retinas from eyes that were injected with vehicle, and this reactivity was decreased by GCR-agonist dexamethasone (Dex) and increased by GCR-antagonist RU486. We found that activation of GCR suppresses the reactivity of microglia and inhibited the loss of retinal neurons resulting from excitotoxicity. We provide evidence that the protection-promoting effects of Dex were maintained when the microglia were selectively ablated. Similarly, intraocular injections of Dex protected ganglion cells from colchicine-treatment and protected photoreceptors from damage caused by retinal detachment. We conclude that activation of GCR promotes the survival of ganglion cells in colchicine-damaged retinas, promotes the survival of amacrine and bipolar cells in excitotoxin-damaged retinas, and promotes the survival of photoreceptors in detached retinas. We propose that suppression of microglial reactivity is secondary to activation of GCR in Müller glia, and this mode of signaling is an effective means to lessen the damage and vision loss resulting from different types of retinal damage.


Assuntos
Células Ependimogliais/metabolismo , Neurônios/fisiologia , Receptores de Glucocorticoides/metabolismo , Retina/citologia , Animais , Animais Recém-Nascidos , Contagem de Células , Galinhas , Colchicina/farmacologia , Citocinas/metabolismo , Células Ependimogliais/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Injeções Intraoculares , N-Metilaspartato/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Receptores de Glucocorticoides/genética , Descolamento Retiniano/induzido quimicamente , Descolamento Retiniano/metabolismo , Descolamento Retiniano/patologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Moduladores de Tubulina/farmacologia , Vias Visuais/efeitos dos fármacos , Vias Visuais/metabolismo , Proteínas de Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...