Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617353

RESUMO

Centrosomes are the principal microtubule-organizing centers of the cell and play an essential role in mitotic spindle function. Centrosome biogenesis is achieved by strict control of protein acquisition and phosphorylation prior to mitosis. Defects in this process promote fragmentation of pericentriolar material culminating in multipolar spindles and chromosome missegregation. Centriolar satellites, membrane-less aggrupations of proteins involved in the trafficking of proteins toward and away from the centrosome, are thought to contribute to centrosome biogenesis. Here we show that the microtubule plus-end directed kinesin motor Kif9 localizes to centriolar satellites and regulates their pericentrosomal localization during interphase. Lack of Kif9 leads to aggregation of satellites closer to the centrosome and increased centrosomal protein degradation that disrupts centrosome maturation and results in chromosome congression and segregation defects during mitosis. Our data reveal roles for Kif9 and centriolar satellites in the regulation of cellular proteostasis and mitosis.

2.
EMBO J ; 42(15): e113565, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37305927

RESUMO

BRCA1/BARD1 is a tumor suppressor E3 ubiquitin (Ub) ligase with roles in DNA damage repair and in transcriptional regulation. BRCA1/BARD1 RING domains interact with nucleosomes to facilitate mono-ubiquitylation of distinct residues on the C-terminal tail of histone H2A. These enzymatic domains constitute a small fraction of the heterodimer, raising the possibility of functional chromatin interactions involving other regions such as the BARD1 C-terminal domains that bind nucleosomes containing the DNA damage signal H2A K15-Ub and H4 K20me0, or portions of the expansive intrinsically disordered regions found in both subunits. Herein, we reveal novel interactions that support robust H2A ubiquitylation activity mediated through a high-affinity, intrinsically disordered DNA-binding region of BARD1. These interactions support BRCA1/BARD1 recruitment to chromatin and sites of DNA damage in cells and contribute to their survival. We also reveal distinct BRCA1/BARD1 complexes that depend on the presence of H2A K15-Ub, including a complex where a single BARD1 subunit spans adjacent nucleosome units. Our findings identify an extensive network of multivalent BARD1-nucleosome interactions that serve as a platform for BRCA1/BARD1-associated functions on chromatin.


Assuntos
Nucleossomos , Proteínas Supressoras de Tumor , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Ubiquitinação , Histonas/genética , Histonas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Cromatina
3.
J Proteome Res ; 22(2): 647-655, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36629399

RESUMO

Fragmentation ion spectral analysis of chemically cross-linked proteins is an established technology in the proteomics research repertoire for determining protein interactions, spatial orientation, and structure. Here we present Kojak version 2.0, a major update to the original Kojak algorithm, which was developed to identify cross-linked peptides from fragment ion spectra using a database search approach. A substantially improved algorithm with updated scoring metrics, support for cleavable cross-linkers, and identification of cross-links between 15N-labeled homomultimers are among the newest features of Kojak 2.0 presented here. Kojak 2.0 is now integrated into the Trans-Proteomic Pipeline, enabling access to dozens of additional tools within that suite. In particular, the PeptideProphet and iProphet tools for validation of cross-links improve the sensitivity and accuracy of correct cross-link identifications at user-defined thresholds. These new features improve the versatility of the algorithm, enabling its use in a wider range of experimental designs and analysis pipelines. Kojak 2.0 remains open-source and multiplatform.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Proteínas/química , Software , Reagentes de Ligações Cruzadas/química
4.
EMBO J ; 42(8): e112600, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36651597

RESUMO

Forcing budding yeast to chromatinize their DNA with human histones manifests an abrupt fitness cost. We previously proposed chromosomal aneuploidy and missense mutations as two potential modes of adaptation to histone humanization. Here, we show that aneuploidy in histone-humanized yeasts is specific to a subset of chromosomes that are defined by their centromeric evolutionary origins but that these aneuploidies are not adaptive. Instead, we find that a set of missense mutations in outer kinetochore proteins drives adaptation to human histones. Furthermore, we characterize the molecular mechanism underlying adaptation in two mutants of the outer kinetochore DASH/Dam1 complex, which reduce aneuploidy by suppression of chromosome instability. Molecular modeling and biochemical experiments show that these two mutants likely disrupt a conserved oligomerization interface thereby weakening microtubule attachments. We propose a model through which weakened microtubule attachments promote increased kinetochore-microtubule turnover and thus suppress chromosome instability. In sum, our data show how a set of point mutations evolved in histone-humanized yeasts to counterbalance human histone-induced chromosomal instability through weakening microtubule interactions, eventually promoting a return to euploidy.


Assuntos
Cinetocoros , Proteínas de Saccharomyces cerevisiae , Humanos , Cinetocoros/metabolismo , Histonas/genética , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Segregação de Cromossomos/genética , Ploidias , Aneuploidia
5.
Structure ; 30(9): 1269-1284.e6, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716664

RESUMO

RING-between-RING (RBR) E3 ligases mediate ubiquitin transfer through an obligate E3-ubiquitin thioester intermediate prior to substrate ubiquitination. Although RBRs share a conserved catalytic module, substrate recruitment mechanisms remain enigmatic, and the relevant domains have yet to be identified for any member of the class. Here we characterize the interaction between the auto-inhibited RBR, HHARI (AriH1), and its target protein, 4EHP, using a combination of XL-MS, HDX-MS, NMR, and biochemical studies. The results show that (1) a di-aromatic surface on the catalytic HHARI Rcat domain forms a binding platform for substrates and (2) a phosphomimetic mutation on the auto-inhibitory Ariadne domain of HHARI promotes release and reorientation of Rcat for transthiolation and substrate modification. The findings identify a direct binding interaction between a RING-between-RING ligase and its substrate and suggest a general model for RBR substrate recognition.


Assuntos
Proteínas Culina , Ubiquitina , Domínio Catalítico , Proteínas Culina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitinação
6.
J Cell Biol ; 221(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35353161

RESUMO

Accurate mitosis requires kinetochores to make persistent, load-bearing attachments to dynamic microtubule tips, thereby coupling chromosome movements to tip growth and shortening. This tip-coupling behavior depends on the conserved Ndc80 complex and, in budding yeast, on the Dam1 complex, which bind each other directly via three distinct interacting regions. The functional relevance of these multiple interactions was mysterious. Here we show that interactions between two of these regions support the high rupture strengths that occur when applied force is rapidly increased and also support the stability of tip-coupling when force is held constant over longer durations. The contribution of either of these two regions to tip-coupling is reduced by phosphorylation by Aurora B kinase. The third interaction region makes no apparent contribution to rupture strength, but its phosphorylation by Aurora B kinase specifically decreases the long-term stability of tip-coupling. The specific reduction of long-term stability relative to short-term strength might have important implications for mitotic error correction.


Assuntos
Cinetocoros , Proteínas Associadas aos Microtúbulos , Microtúbulos , Mitose , Proteínas de Saccharomyces cerevisiae , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular , Segregação de Cromossomos , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares , Fosforilação , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Anal Chem ; 94(8): 3501-3509, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35184559

RESUMO

Drugs are often metabolized to reactive intermediates that form protein adducts. Adducts can inhibit protein activity, elicit immune responses, and cause life-threatening adverse drug reactions. The masses of reactive metabolites are frequently unknown, rendering traditional mass spectrometry-based proteomics approaches incapable of adduct identification. Here, we present Magnum, an open-mass search algorithm optimized for adduct identification, and Limelight, a web-based data processing package for analysis and visualization of data from all existing algorithms. Limelight incorporates tools for sample comparisons and xenobiotic-adduct discovery. We validate our tools with three drug/protein combinations and apply our label-free workflow to identify novel xenobiotic-protein adducts in CYP3A4. Our new methods and software enable accurate identification of xenobiotic-protein adducts with no prior knowledge of adduct masses or protein targets. Magnum outperforms existing label-free tools in xenobiotic-protein adduct discovery, while Limelight fulfills a major need in the rapidly developing field of open-mass searching, which until now lacked comprehensive data visualization tools.


Assuntos
Proteínas , Proteômica , Algoritmos , Adutos de DNA , Espectrometria de Massas/métodos , Proteínas/análise , Proteômica/métodos , Software
8.
Elife ; 102021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949948

RESUMO

Microtubule (MT) nucleation is regulated by the γ-tubulin ring complex (γTuRC), conserved from yeast to humans. In Saccharomyces cerevisiae, γTuRC is composed of seven identical γ-tubulin small complex (γTuSC) sub-assemblies, which associate helically to template MT growth. γTuRC assembly provides a key point of regulation for the MT cytoskeleton. Here, we combine crosslinking mass spectrometry, X-ray crystallography, and cryo-EM structures of both monomeric and dimeric γTuSCs, and open and closed helical γTuRC assemblies in complex with Spc110p to elucidate the mechanisms of γTuRC assembly. γTuRC assembly is substantially aided by the evolutionarily conserved CM1 motif in Spc110p spanning a pair of adjacent γTuSCs. By providing the highest resolution and most complete views of any γTuSC assembly, our structures allow phosphorylation sites to be mapped, surprisingly suggesting that they are mostly inhibitory. A comparison of our structures with the CM1 binding site in the human γTuRC structure at the interface between GCP2 and GCP6 allows for the interpretation of significant structural changes arising from CM1 helix binding to metazoan γTuRC.


Assuntos
Antígenos Nucleares/genética , Microtúbulos/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Sítios de Ligação , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Humanos , Espectrometria de Massas/métodos , Centro Organizador dos Microtúbulos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/classificação , Tubulina (Proteína)/metabolismo
9.
PLoS Genet ; 15(10): e1008423, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31584935

RESUMO

Accurate segregation of chromosomes to daughter cells is a critical aspect of cell division. It requires the kinetochores on duplicated chromosomes to biorient, attaching to microtubules from opposite poles of the cell. Bioriented attachments come under tension, while incorrect attachments lack tension and must be released to allow proper attachments to form. A well-studied error correction pathway is mediated by the Aurora B kinase, which destabilizes low tension-bearing attachments. We recently discovered that in vitro, kinetochores display an additional intrinsic tension-sensing pathway that utilizes Stu2. The contribution of kinetochore-associated Stu2 to error correction in cells, however, was unknown. Here, we identify a Stu2 mutant that abolishes its kinetochore function and show that it causes biorientation defects in vivo. We also show that this Stu2-mediated pathway functions together with the Aurora B-mediated pathway. Altogether, our work indicates that cells employ multiple pathways to ensure biorientation and the accuracy of chromosome segregation.


Assuntos
Aurora Quinases/metabolismo , Segregação de Cromossomos , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Aurora Quinases/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
J Proteome Res ; 18(2): 759-764, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30525651

RESUMO

Proxl is an open-source web application for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data and results. Proxl's core features include comparing data sets, structural analysis, customizable and interactive data visualizations, access to all underlying mass spectrometry data, and quality-control tools. All features of Proxl are designed to be independent of specific cross-linker chemistry or software analysis pipelines. Proxl's sharing tools allow users to share their data with the public or securely restrict access to trusted collaborators. Since being published in 2016, Proxl has continued to be expanded and improved through active development and collaboration with cross-linking researchers. Some of Proxl's new features include a centralized, public site for sharing data, greatly expanded quality-control tools and visualizations, support for stable isotope-labeled peptides, and general improvements that make Proxl easier to use, data easier to share and import, and data visualizations more customizable. Source code and more information are found at http://proxl-ms.org/ .


Assuntos
Bases de Dados de Proteínas , Disseminação de Informação/métodos , Proteômica/métodos , Software , Espectrometria de Massas , Controle de Qualidade , Interface Usuário-Computador
11.
Mol Cell ; 72(4): 753-765.e6, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30392931

RESUMO

DNA methylation patterns regulate gene expression programs and are maintained through a highly coordinated process orchestrated by the RING E3 ubiquitin ligase UHRF1. UHRF1 controls DNA methylation inheritance by reading epigenetic modifications to histones and DNA to activate histone H3 ubiquitylation. Here, we find that all five domains of UHRF1, including the previously uncharacterized ubiquitin-like domain (UBL), cooperate for hemi-methylated DNA-dependent H3 ubiquitin ligation. Our structural and biochemical studies, including mutations found in cancer genomes, reveal a bifunctional requirement for the UBL in histone modification: (1) the UBL makes an essential interaction with the backside of the E2 and (2) the UBL coordinates with other UHRF1 domains that recognize epigenetic marks on DNA and histone H3 to direct ubiquitin to H3. Finally, we show UBLs from other E3s also have a conserved interaction with the E2, Ube2D, highlighting a potential prevalence of interactions between UBLs and E2s.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Metilação de DNA , Histonas/metabolismo , Sequência de Aminoácidos , Proteínas Estimuladoras de Ligação a CCAAT/genética , DNA/genética , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Epigênese Genética , Histonas/genética , Humanos , Ligação Proteica , Domínios Proteicos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
12.
Biol Open ; 7(10)2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-29903865

RESUMO

Phosphorylation regulates yeast spindle pole body (SPB) duplication and separation and likely regulates microtubule nucleation. We report a phosphoproteomic analysis using tandem mass spectrometry of enriched Saccharomyces cerevisiae SPBs for two cell cycle arrests, G1/S and the mitotic checkpoint, expanding on previously reported phosphoproteomic data sets. We present a novel phosphoproteomic state of SPBs arrested in G1/S by a cdc4-1 temperature-sensitive mutation, with particular focus on phosphorylation events on the γ-tubulin small complex (γ-TuSC). The cdc4-1 arrest is the earliest arrest at which microtubule nucleation has occurred at the newly duplicated SPB. Several novel phosphorylation sites were identified in G1/S and during mitosis on the microtubule nucleating γ-TuSC. These sites were analyzed in vivo by fluorescence microscopy and were shown to be required for proper regulation of spindle length. Additionally, in vivo analysis of two mitotic sites in Spc97 found that phosphorylation of at least one of these sites is required for progression through the cell cycle. This phosphoproteomic data set not only broadens the scope of the phosphoproteome of SPBs, it also identifies several γ-TuSC phosphorylation sites that influence microtubule formation.

13.
Proc Natl Acad Sci U S A ; 115(11): 2740-2745, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29487209

RESUMO

Accurate segregation of chromosomes relies on the force-bearing capabilities of the kinetochore to robustly attach chromosomes to dynamic microtubule tips. The human Ska complex and Ndc80 complex are outer-kinetochore components that bind microtubules and are required to fully stabilize kinetochore-microtubule attachments in vivo. While purified Ska complex tracks with disassembling microtubule tips, it remains unclear whether the Ska complex-microtubule interaction is sufficiently strong to make a significant contribution to kinetochore-microtubule coupling. Alternatively, Ska complex might affect kinetochore coupling indirectly, through recruitment of phosphoregulatory factors. Using optical tweezers, we show that the Ska complex itself bears load on microtubule tips, strengthens Ndc80 complex-based tip attachments, and increases the switching dynamics of the attached microtubule tips. Cross-linking mass spectrometry suggests the Ska complex directly binds Ndc80 complex through interactions between the Ska3 unstructured C-terminal region and the coiled-coil regions of each Ndc80 complex subunit. Deletion of the Ska complex microtubule-binding domain or the Ska3 C terminus prevents Ska complex from strengthening Ndc80 complex-based attachments. Together, our results indicate that the Ska complex can directly strengthen the kinetochore-microtubule interface and regulate microtubule tip dynamics by forming an additional connection between the Ndc80 complex and the microtubule.


Assuntos
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular , Segregação de Cromossomos , Proteínas do Citoesqueleto , Humanos , Cinetocoros/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/genética , Proteínas Nucleares/genética , Ligação Proteica
14.
Mol Pharmacol ; 93(5): 489-503, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29476041

RESUMO

The clearance of retinoic acid (RA) and its metabolites is believed to be regulated by the CYP26 enzymes, but the specific roles of CYP26A1, CYP26B1, and CYP26C1 in clearing active vitamin A metabolites have not been defined. The goal of this study was to establish the substrate specificity of CYP26C1, and determine whether CYP26C1 interacts with cellular retinoic acid binding proteins (CRABPs). CYP26C1 was found to effectively metabolize all-trans retinoic acid (atRA), 9-cis-retinoic acid (9-cis-RA), 13-cis-retinoic acid, and 4-oxo-atRA with the highest intrinsic clearance toward 9-cis-RA. In comparison with CYP26A1 and CYP26B1, CYP26C1 resulted in a different metabolite profile for retinoids, suggesting differences in the active-site structure of CYP26C1 compared with other CYP26s. Homology modeling of CYP26C1 suggested that this is attributable to the distinct binding orientation of retinoids within the CYP26C1 active site. In comparison with other CYP26 family members, CYP26C1 was up to 10-fold more efficient in clearing 4-oxo-atRA (intrinsic clearance 153 µl/min/pmol) than CYP26A1 and CYP26B1, suggesting that CYP26C1 may be important in clearing this active retinoid. In support of this, CRABPs delivered 4-oxo-atRA and atRA for metabolism by CYP26C1. Despite the tight binding of 4-oxo-atRA and atRA with CRABPs, the apparent Michaelis-Menten constant in biological matrix (Km) value of these substrates with CYP26C1 was not increased when the substrates were bound with CRABPs, in contrast to what is predicted by free drug hypothesis. Together these findings suggest that CYP26C1 is a 4-oxo-atRA hydroxylase and may be important in regulating the concentrations of this active retinoid in human tissues.


Assuntos
Família 26 do Citocromo P450/metabolismo , Retinoides/metabolismo , Proteínas Celulares de Ligação ao Retinol/metabolismo , Família 26 do Citocromo P450/química , Homeostase , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Proteínas Celulares de Ligação ao Retinol/isolamento & purificação , Especificidade por Substrato
15.
Proc Natl Acad Sci U S A ; 115(7): E1409-E1418, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29386393

RESUMO

Arp2/3 complex nucleates branched actin filaments important for cellular motility and endocytosis. WASP family proteins are Arp2/3 complex activators that play multiple roles in branching nucleation, but little is known about the structural bases of these WASP functions, owing to an incomplete understanding of how WASP binds Arp2/3 complex. Recent data show WASP binds two sites, and biochemical and structural studies led to models in which the WASP C segment engages the barbed ends of the Arp3 and Arp2 subunits while the WASP A segment binds the back side of the complex on Arp3. However, electron microscopy reconstructions showed density for WASP inconsistent with these models on the opposite (front) side of Arp2/3 complex. Here we use chemical cross-linking and mass spectrometry (XL-MS) along with computational docking and structure-based mutational analysis to map the two WASP binding sites on the complex. Our data corroborate the barbed end and back side binding models and show one WASP binding site on Arp3, on the back side of the complex, and a second site on the bottom of the complex, spanning Arp2 and ARPC1. The XL-MS-identified cross-links rule out the front side binding model and show that the A segment of WASP binds along the bottom side of the ARPC1 subunit, instead of at the Arp2/ARPC1 interface, as suggested by FRET experiments. The identified binding sites support the Arp3 tail release model to explain WASP-mediated activating conformational changes in Arp2/3 complex and provide insight into the roles of WASP in branching nucleation.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/química , Complexo 2-3 de Proteínas Relacionadas à Actina/química , Sequência de Aminoácidos , Sítios de Ligação , Ligação Proteica , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência , Proteína da Síndrome de Wiskott-Aldrich/química
16.
Elife ; 62017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28191870

RESUMO

Strong kinetochore-microtubule attachments are essential for faithful segregation of sister chromatids during mitosis. The Dam1 and Ndc80 complexes are the main microtubule binding components of the Saccharomyces cerevisiae kinetochore. Cooperation between these two complexes enhances kinetochore-microtubule coupling and is regulated by Aurora B kinase. We show that the Ndc80 complex can simultaneously bind and bridge across two Dam1 complex rings through a tripartite interaction, each component of which is regulated by Aurora B kinase. Mutations in any one of the Ndc80p interaction regions abrogates the Ndc80 complex's ability to bind two Dam1 rings in vitro, and results in kinetochore biorientation and microtubule attachment defects in vivo. We also show that an extra-long Ndc80 complex, engineered to space the two Dam1 rings further apart, does not support growth. Taken together, our work suggests that each kinetochore in vivo contains two Dam1 rings and that proper spacing between the rings is vital.


Assuntos
Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Ligação Proteica
17.
Elife ; 52016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27805565

RESUMO

Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Apoptose/genética , Biologia Computacional , Humanos , Neoplasias/patologia , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/química
18.
FEBS Lett ; 590(16): 2527-35, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27416800

RESUMO

Cellular retinoic acid binding proteins (CRABPs) bind all-trans-retinoic acid (atRA) tightly. This study aimed to determine whether atRA is channeled directly to cytochrome P450 (CYP) CYP26B1 by CRABPs, and whether CRABPs interact directly with CYP26B1. atRA bound to CRABPs (holo-CRABP) was efficiently metabolized by CYP26B1. Isotope dilution experiments showed that delivery of atRA to CYP26B1 in solution was similar with or without CRABP. Holo-CRABPs had higher affinity for CYP26B1 than free atRA, but both apo-CRABPs inhibited the formation of 4-OH-RA by CYP26B1. Similar protein-protein interactions between soluble binding proteins and CYPs may be important for other lipophilic CYP substrates.


Assuntos
Mapas de Interação de Proteínas/genética , Receptores do Ácido Retinoico/metabolismo , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Humanos , Cinética , Receptores do Ácido Retinoico/genética , Ácido Retinoico 4 Hidroxilase/química , Ácido Retinoico 4 Hidroxilase/genética , Proteínas Celulares de Ligação ao Retinol/genética , Proteínas Celulares de Ligação ao Retinol/metabolismo , Especificidade por Substrato , Tretinoína/química
19.
J Proteome Res ; 15(8): 2863-70, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27302480

RESUMO

ProXL is a Web application and accompanying database designed for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data with an emphasis on structural analysis and quality control. ProXL is designed to be independent of any particular software pipeline. The import process is simplified by the use of the ProXL XML data format, which shields developers of data importers from the relative complexity of the relational database schema. The database and Web interfaces function equally well for any software pipeline and allow data from disparate pipelines to be merged and contrasted. ProXL includes robust public and private data sharing capabilities, including a project-based interface designed to ensure security and facilitate collaboration among multiple researchers. ProXL provides multiple interactive and highly dynamic data visualizations that facilitate structural-based analysis of the observed cross-links as well as quality control. ProXL is open-source, well-documented, and freely available at https://github.com/yeastrc/proxl-web-app .


Assuntos
Bases de Dados de Proteínas , Disseminação de Informação/métodos , Internet , Espectrometria de Massas , Reagentes de Ligações Cruzadas , Colaboração Intersetorial , Interface Usuário-Computador
20.
Mol Biol Cell ; 27(14): 2245-58, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226487

RESUMO

The microtubule (MT) cytoskeleton plays important roles in many cellular processes. In vivo, MT nucleation is controlled by the γ-tubulin ring complex (γTuRC), a 2.1-MDa complex composed of γ-tubulin small complex (γTuSC) subunits. The mechanisms underlying the assembly of γTuRC are largely unknown. In yeast, the conserved protein Spc110p both stimulates the assembly of the γTuRC and anchors the γTuRC to the spindle pole body. Using a quantitative in vitro FRET assay, we show that γTuRC assembly is critically dependent on the oligomerization state of Spc110p, with higher-order oligomers dramatically enhancing the stability of assembled γTuRCs. Our in vitro findings were confirmed with a novel in vivo γTuSC recruitment assay. We conclude that precise spatial control over MT nucleation is achieved by coupling localization and higher-order oligomerization of the receptor for γTuRC.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a Calmodulina , Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...