Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 102(4): 435-452, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38363329

RESUMO

Osteocalcin (OC) is the most abundant non-collagenous and osteoblast-secreted protein in bone. It consists of two forms such as carboxylated OC (cOC) and undercarboxylated OC (ucOC). While cOC promotes bone mineralization and increases bone strength, ucOC is regarded an endocrinologically active form that may have several functions in multiple end organs and tissues. Total OC (tOC) includes both of these forms (cOC and ucOC) and is considered a marker of bone turnover in clinical settings. Most of the data on OC is limited to preclinical studies and therefore may not accurately reflect the situation in clinical conditions. For the stated reason, the aim of this review was not only to summarize current knowledge of all forms of OC and characterize its role in diabetes mellitus, osteoporosis, osteopetrosis, inflammatory joint diseases, but also to provide new interpretations of its involvement in the management and treatment of aforementioned diseases. In this context, special emphasis was placed on available clinical trials. Significantly lower levels of tOC and ucOC could be associated with the risk of type 2 diabetes mellitus. On the contrary, tOC level does not seem to be a good indicator of high bone turnover status in postmenopausal osteoporosis, osteoarthritis and rheumatoid arthritis. The associations between several pharmacological drugs used to treat all disorders mentioned above and OC levels have also been provided. From this perspective, OC may serve as a medium through which certain medications can influence glucose metabolism, body weight, adiponectin secretion, and synovial inflammation.


Assuntos
Diabetes Mellitus Tipo 2 , Artropatias , Osteopetrose , Osteoporose , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Osteocalcina/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Biomarcadores
2.
Antioxidants (Basel) ; 12(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36978815

RESUMO

Osteoporosis and breast cancer are serious diseases that have become a significant socioeconomic burden. There are biochemical associations between the two disorders in terms of the amended function of estrogen, receptor activator of nuclear factor kappa beta ligand, oxidative stress, inflammation, and lipid accumulation. Honey as a functional food with high antioxidant and anti-inflammatory properties can contribute to the prevention of various diseases. Its health benefits are mainly related to the content of polyphenols. This review aims to summarize the current knowledge from in vitro, animal, and human studies on the use of honey as a potential therapeutic agent for osteoporosis and breast cancer. Preclinical studies have revealed a beneficial impact of honey on both bone health (microstructure, strength, oxidative stress) and breast tissue health (breast cancer cell proliferation and apoptosis, tumor growth rate, and volume). The limited number of clinical trials, especially in osteoporosis, indicates the need for further research to evaluate the potential benefits of honey in the treatment. Clinical studies related to breast cancer have revealed that honey is effective in increasing blood cell counts, interleukin-3 levels, and quality of life. In summary, honey may serve as a prospective therapeutic supplement for bone and breast tissue health.

3.
Front Endocrinol (Lausanne) ; 14: 1113547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926025

RESUMO

The skeleton is the third most common site of metastatic disease, which causes serious bone complications and short-term prognosis in cancer patients. Prostate and breast cancers are responsible for the majority of bone metastasis, resulting in osteolytic or osteoblastic lesions. The crosstalk between bone cells and their interactions with tumor cells are important in the development of lesions. Recently, both preclinical and clinical studies documented the clinical relevance of bone-derived factors, including osteocalcin (OC) and its undercarboxylated form (ucOC), fibroblast growth factor 23 (FGF23), sclerostin (SCL), and lipocalin 2 (LCN2) as prognostic tumor biomarkers and potential therapeutic targets in bone metastasis. Both OC and ucOC could be useful targets for the prevention of bone metastasis in breast cancer. Moreover, elevated OC level may be a metastatic marker of prostate cancer. FGF23 is particularly important for those forms of cancer that primarily affect bone and/or are characterized by bone metastasis. In other tumor entities, increased FGF23 level is enigmatic. SCL plays a significant role in the pathogenesis of both osteolytic and osteoblastic lesions, as its levels are high in metastatic breast and prostate cancers. Elevated expression levels of LCN2 have been found in aggressive subtypes of cancer. However, its role in anti-metastasis varies significantly between different cancer types. Anyway, all aforementioned bone-derived factors can be used as promising tumor biomarkers. As metastatic bone disease is generally not curable, targeting bone factors represents a new trend in the prevention of bone metastasis and patient care.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Masculino , Humanos , Osteocalcina , Fator de Crescimento de Fibroblastos 23 , Lipocalina-2 , Neoplasias Ósseas/secundário , Neoplasias da Próstata/patologia , Biomarcadores Tumorais
4.
Genes (Basel) ; 14(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672934

RESUMO

The present study analyzed the effect of vitamin D receptor (VDR) gene polymorphisms (ApaI, TaqI, BsmI, FokI, and Cdx2) on bone mineral density (BMD), biochemical parameters and bone turnover markers, fracture prevalence, and response to three types of antiresorptive therapy (estrogen-progesterone, raloxifene, and ibandronate) in 356 postmenopausal women from Slovakia. Association analysis revealed a significant effect of BsmI polymorphism on lumbar spine BMD, serum osteocalcin (OC), and ß-CrossLaps levels. While ApaI and Cdx2 polymorphisms were associated with OC and alkaline phosphatase, TaqI polymorphism affected all turnover markers. ApaI, TaqI, and BsmI genotypes increased the risk of spinal, radial, or total fractures with odds ratios ranging from 2.03 to 3.17. Each of therapy types evaluated had a beneficial effect on all osteoporosis-related traits; however, the VDR gene affected only ibandronate and raloxifene treatment. ApaI/aa, TaqI/TT, and BsmI/bb genotypes showed a weaker or no response to ibandronate therapy in femoral and spinal BMD. The impact of aforementioned polymorphisms on turnover markers was also genotype dependent. On the contrary, only TaqI and BsmI polymorphisms influenced raloxifene therapy, even only in lumbar spine BMD. These results point to the potential of using the VDR gene in personalized pharmacotherapy of osteoporosis.


Assuntos
Fraturas Ósseas , Osteoporose , Feminino , Humanos , Receptores de Calcitriol/genética , Cloridrato de Raloxifeno/uso terapêutico , Ácido Ibandrônico , Polimorfismo Genético , Osteoporose/tratamento farmacológico , Osteoporose/genética , Fraturas Ósseas/genética
5.
Biology (Basel) ; 11(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36290306

RESUMO

The extended microbial genome-the gut microbiome (GM)-plays a significant role in host health and disease. It is able to influence a number of physiological functions. During dysbiosis, GM is associated with the development of various chronic diseases with impaired bone quality. In general, GM is important for bone homeostasis and can affect it via several mechanisms. This review describes the roles of GM in bone homeostasis through influencing the immune and endocrine functions, short-chain fatty acids production, calcium absorption and the gut-brain axis. The relationship between GM composition and several bone-related diseases, specifically osteoporosis, osteoarthritis, rheumatoid arthritis, diabetes mellitus, obesity and bone cancer, is also highlighted and summarized. GM manipulation may become a future adjuvant therapy in the prevention of many chronic diseases. Therefore, the beneficial effects of probiotic therapy to improve the health status of individuals with aforementioned diseases are provided, but further studies are needed to clearly confirm its effectiveness. Recent evidence suggests that GM is responsible for direct and indirect effects on drug efficacy. Accordingly, various GM alterations and interactions related to the treatment of bone-related diseases are mentioned as well.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35438085

RESUMO

In today's modern society, it seems to be more and more challenging to cope with life stresses. The effect of psychological stress on emotional and physical health can be devastating, and increased stress is associated with increased rates of heart attack, hypertension, obesity, addiction, anxiety and depression. This review focuses on the possibility of an influence of psychological stress on the metabolism of selected antidepressants (TCAs, SSRIs, SNRIs, SARIs, NDRIs a MMAs) and anxiolytics (benzodiazepines and azapirone), as patients treated with antidepressants and/or anxiolytics can still suffer from psychological stress. Emphasis is placed on the drug metabolism mediated by the enzymes of Phase I, typically cytochromes P450 (CYPs), which are the major enzymes involved in drug metabolism, as the majority of psychoactive substances are metabolized by numerous CYPs (such as CYP1A2, CYP2B6, CYP2C19, CYP2C9, CYP2A6, CYP2D6, CYP3A4). As the data on the effect of stress on human enzymes are extremely rare, modulation of the efficacy and even regulation of the biotransformation pathways of drugs by psychological stress can be expected to play a significant role, as there is increasing evidence that stress can alter drug metabolism, hence there is a risk of less effective drug metabolism and increased side effects.


Assuntos
Ansiolíticos , Ansiolíticos/metabolismo , Antidepressivos/metabolismo , Biotransformação , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Estresse Psicológico
7.
J Chromatogr Sci ; 60(1): 81-87, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33876238

RESUMO

Metronidazole is a drug used to treat bacterial and protozoan infections. Nowadays, it is one of the most frequently prescribed drugs worldwide. The main aim of this paper is to present a rapid, reliable and simple high-performance liquid chromatography (HPLC) method to determine metronidazole along with its primary metabolite, 2-hydroxymetronidazole, in plasma or serum using paracetamol as an internal standard. A total of 100% methanol was used to denature plasma proteins. After centrifugation, the supernatant was evaporated under nitrogen flow. The samples were dissolved in the mobile phase and injected into a Li-Chrospher RP-18 column. A total of 10 mmol/L NaH2PO4: acetonitrile (90:10, v/v) solution with a flow rate of 1 mL/min was used as the mobile phase. Metronidazole and 2-hydroxymetronidazole were detected at two different wavelengths at 320 nm and 311 nm, respectively. The method is characterized by high precision (relative standard deviation % < 6). The method was used for the determination of metronidazole and 2-hydroxymetronidazole in murine blood using small amounts of plasma (≤100 µL).


Assuntos
Metronidazol , Plasma , Animais , Cromatografia Líquida de Alta Pressão , Metronidazol/análogos & derivados , Camundongos
8.
PLoS One ; 16(11): e0259643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752478

RESUMO

Microbiome is now considered as a significant metabolic organ with an immense potential to influence overall human health. A number of diseases that are associated with pharmacotherapy interventions was linked with altered gut microbiota. Moreover, it has been reported earlier that gut microbiome modulates the fate of more than 30 commonly used drugs and, vice versa, drugs have been shown to affect the composition of the gut microbiome. The molecular mechanisms of this mutual relationship, however, remain mostly elusive. Recent studies indicate an indirect effect of the gut microbiome through its metabolites on the expression of biotransformation enzymes in the liver. The aim of this study was to analyse the effect of gut microbiome on the fate of metronidazole in the mice through modulation of system of drug metabolizing enzymes, namely by alteration of the expression and activity of selected cytochromes P450 (CYPs). To assess the influence of gut microbiome, germ-free mice (GF) in comparison to control specific-pathogen-free (SPF) mice were used. First, it has been found that the absence of microbiota significantly affected plasma concentration of metronidazole, resulting in higher levels (by 30%) of the parent drug in murine plasma of GF mice. Further, the significant interaction between presence/absence of the gut microbiome and effect of metronidazole application, which together influence mRNA expression of CAR, PPARα, Cyp2b10 and Cyp2c38 was determined. Administration of metronidazole itself influenced significantly mRNA expression of Cyp1a2, Cyp2b10, Cyp2c38 and Cyp2d22. Finally, GF mice have shown lower level of enzyme activity of CYP2A and CYP3A than their SPF counterparts. The results hence have shown that, beside direct bacterial metabolism, different expression and enzyme activity of hepatic CYPs in the presence/absence of gut microbiota may be responsible for the altered metronidazole metabolism.


Assuntos
Microbioma Gastrointestinal , Animais , Fígado , Metronidazol , Camundongos
9.
Front Pharmacol ; 11: 01303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123003

RESUMO

Sexual differences and the composition/function of the gut microbiome are not considered the most important players in the drug metabolism field; however, from the recent data it is obvious that they may significantly affect the response of the patient to therapy. Here, we evaluated the effect of microbial colonization and sex differences on mRNA expression and the enzymatic activity of hepatic cytochromes P450 (CYPs) in germ-free (GF) mice, lacking the intestinal flora, and control specific-pathogen-free (SPF) mice. We observed a significant increase in the expression of Cyp3a11 in female SPF mice compared to the male group. However, the sex differences were erased in GF mice, and the expression of Cyp3a11 was about the same in both sexes. We have also found higher Cyp2c38 gene expression in female mice compared to male mice in both the SPF and GF groups. Moreover, these changes were confirmed at the level of enzymatic activity, where the female mice exhibit higher levels of functional CYP2C than males in both groups. Interestingly, we observed the same trend as with CYP3A enzymes: a diminished difference between the sexes in GF mice. The presented data indicate that the mouse gut microbiome plays an important role in sustaining sexual dimorphism in terms of hepatic gene expression and metabolism.

10.
Sci Rep ; 10(1): 8529, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444678

RESUMO

The gut microbiota is involved in a number of different metabolic processes of the host organism, including the metabolism of xenobiotics. In our study, we focused on liver cytochromes P450 (CYPs), which can metabolize a wide range of exo- and endogenous molecules. We studied changes in mRNA expression and CYP enzyme activities, as well as the mRNA expression of transcription factors that have an important role in CYP expression, all in stressed germ-free (GF) and stressed specific-pathogen-free (SPF) mice. Besides the presence of the gut microbiota, we looked at the difference between acute and chronic stress. Our results show that stress has an impact on CYP mRNA expression, but it is mainly chronic stress that has a significant effect on enzyme activities along with the gut microbiome. In acutely stressed mice, we observed significant changes at the mRNA level, however, the corresponding enzyme activities were not influenced. Our study suggests an important role of the gut microbiota along with chronic psychosocial stress in the expression and activity of CYPs, which can potentially lead to less effective drug metabolism and, as a result, a harmful impact on the organism.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Microbioma Gastrointestinal/fisiologia , Fígado/enzimologia , RNA Mensageiro/metabolismo , Estresse Psicológico , Xenobióticos/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica , Fígado/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...