Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 325(6): G570-G581, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873577

RESUMO

Growth and specification of the mouse intestine occurs in utero and concludes after birth. Although numerous studies have examined this developmental process in the small intestine, far less is known about the cellular and molecular cues required for colon development. In this study, we examine the morphological events leading to crypt formation, epithelial cell differentiation, proliferation, and the emergence and expression of a stem and progenitor cell marker Lrig1. Through multicolor lineage tracing, we show Lrig1-expressing cells are present at birth and behave as stem cells to establish clonal crypts within 3 wk of life. In addition, we use an inducible knockout mouse to eliminate Lrig1 and show Lrig1 restrains proliferation within a critical developmental time window, without impacting colonic epithelial cell differentiation. Our study illustrates morphological changes during crypt development and the importance of Lrig1 in the developing colon.NEW & NOTEWORTHY Our studies define the importance of studying Lrig1 in colon development. We address a critical gap in the intestinal development literature and provide new information about the molecular cues that guide colon development. Using a novel, inducible knockout of Lrig1, we show Lrig1 is required for appropriate colon epithelial growth and illustrate the importance of Lrig1-expressing cells in the establishment of colonic crypts.


Assuntos
Neoplasias do Colo , Proteínas do Tecido Nervoso , Camundongos , Animais , Proteínas do Tecido Nervoso/metabolismo , Colo/metabolismo , Intestino Delgado/metabolismo , Neoplasias do Colo/metabolismo , Camundongos Knockout , Proliferação de Células , Mucosa Intestinal/metabolismo , Glicoproteínas de Membrana/metabolismo
2.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205411

RESUMO

Growth and specification of the mouse intestine occurs in utero and concludes after birth. While numerous studies have examined this developmental process in the small intestine, far less is known about the cellular and molecular cues required for colon development. In this study, we examine the morphological events leading to crypt formation, epithelial cell differentiation, areas of proliferation, and the emergence and expression of a stem and progenitor cell marker Lrig1. Through multicolor lineage tracing, we show Lrig1 expressing cells are present at birth and behave as stem cells to establish clonal crypts within three weeks after birth. In addition, we use an inducible knockout mouse to eliminate Lrig1 during colon development and show loss of Lrig1 restrains proliferation within a critical developmental time window, without impacting colonic epithelial cell differentiation. Our study illustrates the morphological changes that occur during crypt development and the importance of Lrig1 in the developing colon.

3.
Gastroenterology ; 160(5): 1694-1708.e3, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33388316

RESUMO

BACKGROUND & AIMS: Patients with inflammatory bowel disease (IBD) demonstrate nutritional selenium deficiencies and are at greater risk of developing colon cancer. Previously, we determined that global reduction of the secreted antioxidant selenium-containing protein, selenoprotein P (SELENOP), substantially increased tumor development in an experimental colitis-associated cancer (CAC) model. We next sought to delineate tissue-specific contributions of SELENOP to intestinal inflammatory carcinogenesis and define clinical context. METHODS: Selenop floxed mice crossed with Cre driver lines to delete Selenop from the liver, myeloid lineages, or intestinal epithelium were placed on an azoxymethane/dextran sodium sulfate experimental CAC protocol. SELENOP loss was assessed in human ulcerative colitis (UC) organoids, and expression was queried in human and adult UC samples. RESULTS: Although large sources of SELENOP, both liver- and myeloid-specific Selenop deletion failed to modify azoxymethane/dextran sodium sulfate-mediated tumorigenesis. Instead, epithelial-specific deletion increased CAC tumorigenesis, likely due to elevated oxidative stress with a resulting increase in genomic instability and augmented tumor initiation. SELENOP was down-regulated in UC colon biopsies and levels were inversely correlated with endoscopic disease severity and tissue S100A8 (calprotectin) gene expression. CONCLUSIONS: Although global selenium status is typically assessed by measuring liver-derived plasma SELENOP levels, our results indicate that the peripheral SELENOP pool is dispensable for CAC. Colonic epithelial SELENOP is the main contributor to local antioxidant capabilities. Thus, colonic SELENOP is the most informative means to assess selenium levels and activity in IBD patients and may serve as a novel biomarker for UC disease severity and identify patients most predisposed to CAC development.


Assuntos
Colite Ulcerativa/metabolismo , Neoplasias Associadas a Colite/prevenção & controle , Colite/metabolismo , Colo/metabolismo , Mucosa Intestinal/metabolismo , Estresse Oxidativo , Selenoproteína P/metabolismo , Adolescente , Animais , Azoximetano , Estudos de Casos e Controles , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Criança , Pré-Escolar , Colite/induzido quimicamente , Colite/genética , Colite Ulcerativa/genética , Neoplasias Associadas a Colite/induzido quimicamente , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/metabolismo , Colo/patologia , Dano ao DNA , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Instabilidade Genômica , Humanos , Mucosa Intestinal/patologia , Fígado/metabolismo , Masculino , Camundongos Knockout , Células Mieloides/metabolismo , Selenoproteína P/genética
4.
Proc Natl Acad Sci U S A ; 116(39): 19652-19658, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31488717

RESUMO

Helicobacter pylori-induced gastritis is the strongest risk factor for gastric adenocarcinoma, a malignancy preceded by a series of well-defined histological stages, including metaplasia. One microbial constituent that augments cancer risk is the cag type 4 secretion system (T4SS), which translocates the oncoprotein CagA into host cells. Aberrant stem cell activation is linked to carcinogenesis, and Lrig1 (leucine-rich repeats and Ig-like domains 1) marks a distinct population of progenitor cells. We investigated whether microbial effectors with carcinogenic potential influence Lrig1 progenitor cells ex vivo and via lineage expansion within H. pylori-infected gastric mucosa. Lineage tracing was induced in Lrig1-CreERT2/+;R26R-YFP/+ (Lrig1/YFP) mice that were uninfected or subsequently infected with cag+H. pylori or an isogenic cagE- mutant (nonfunctional T4SS). In contrast to infection with wild-type (WT) H. pylori for 2 wk, infection for 8 wk resulted in significantly increased inflammation and proliferation in the corpus and antrum compared with uninfected or mice infected with the cagE- mutant. WT H. pylori-infected mice harbored significantly higher numbers of Lrig1/YFP epithelial cells that coexpressed UEA1 (surface cell marker). The number of cells coexpressing intrinsic factor (chief cell marker), YFP (lineage marker), and GSII lectin (spasmolytic polypeptide-expressing metaplasia marker) were increased only by WT H. pylori In human samples, Lrig1 expression was significantly increased in lesions with premalignant potential compared with normal mucosa or nonatrophic gastritis. In conclusion, chronic H. pylori infection stimulates Lrig1-expressing progenitor cells in a cag-dependent manner, and these reprogrammed cells give rise to a full spectrum of differentiated cells.


Assuntos
Helicobacter pylori/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/microbiologia , Animais , Carcinogênese/patologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Gastrite/metabolismo , Gastrite/patologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/microbiologia , Lesões Pré-Cancerosas/patologia , Cultura Primária de Células , Fatores de Risco , Células-Tronco/metabolismo , Estômago/microbiologia , Estômago/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
5.
Cell Mol Gastroenterol Hepatol ; 8(3): 369-378, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31108231

RESUMO

The intestinal epithelium does not function in isolation, but interacts with many components including the Enteric Nervous System (ENS). Understanding ENS and intestinal epithelium interactions requires multidisciplinary approaches to uncover cells involved, mechanisms used, and the ultimate influence on intestinal physiology. This review is intended to serve as a reference for epithelial biologists interested in studying these interactions. With this in mind, this review aims to summarize the basic anatomy of the epithelium and ENS, mechanisms by which they interact, and techniques used to study these interactions. We highlight in vitro, ex vivo and in vivo techniques. Additionally, ENS influence on epithelial proliferation and gene expression within stem and differentiated cells as well as gastrointestinal cancer are discussed.


Assuntos
Sistema Nervoso Entérico/anatomia & histologia , Redes Reguladoras de Genes , Mucosa Intestinal/anatomia & histologia , Animais , Comunicação Celular , Proliferação de Células , Sistema Nervoso Entérico/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...