Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Obes Metab Syndr ; 32(4): 330-337, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37952936

RESUMO

Background: Levels of pentraxin 3 (PTX3), an anti-inflammatory cardioprotective protein, increase after weight loss in obese men and aerobic exercise in non-obese adults. However, the effect of nutritional characteristics on PTX3 levels remains unclear. This population-based, cross-sectional study investigated the association between circulating PTX3 levels and food intake in Japanese adults. Methods: We hypothesized that the consumption of high amounts of high-sugar foods would lead to low plasma PTX3 levels, resulting in obesity. This study included 327 participants categorized depending on the consumption of the recommended amount of confectionary and sugar-sweetened beverages (CSSB) into high and low groups. Results: PTX3 levels were significantly lower in the high CSSB group than in the low CSSB group. Biological sex was the strongest effector of PTX3 levels. Moreover, the intake of Tsukudani and CSSB, as well as some metabolic syndrome factors, also affect PTX3 levels. In the groups categorized by sex and age, the determinants of PTX3 levels differed. Body mass index, waist circumference (WC), and high-density lipoprotein cholesterol (HDL-C) were significantly associated with PTX3 levels in women. Tsukudani, HDL-C, heart rate, saturated fatty acids, systolic blood pressure, and CSSB were associated with PTX3 levels in individuals aged >65 years. Conclusion: Our results show that circulating PTX3 levels are affected by sex, sugar-rich foods, and metabolic syndrome characteristics (WC, HDL-C).

2.
Int J Sports Med ; 44(9): 618-624, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36787803

RESUMO

The R577X polymorphism in the α-actinin-3 gene (ACTN3) is associated with muscle strength and power; there is an association between ACTN3 R577X polymorphism and range of motion (ROM). We examined the effect of the ACTN3 R577X polymorphism on ROM through meta-analysis and systematic review. Relevant studies published before April 14, 2022 were identified from the PubMed database using the following keywords and Boolean operators: ("flexibility" or "Joint Range of Motion" or "Joint Flexibility" or "Range of motion") and ("ACTN3" or "alpha-actinin 3"). Studies that met the following criteria were included: (1) published in English, (2) included human subjects, (3) provided ROM measurements, and (4) analyzed the ACTN3 R577X genotype. A total of 2908 participants from seven studies were included in the meta-analysis. The additive genetic model was assessed using a meta-regression model, and dominant and recessive models were analyzed using a random effects model. The ROM in the XX+RX genotype was significantly higher than that in the RR genotype (recessive model: p<0.001), and it increased additively in the order XX>RX>RR (additive model: p=0.029). However, no significant association was observed in the dominant model. These findings further elucidate the association between flexibility and the ACTN3 R577X genotype.


Assuntos
Actinina , Polimorfismo Genético , Humanos , Actinina/genética , Genótipo , Força Muscular/genética , Amplitude de Movimento Articular
3.
Eur J Sport Sci ; 23(6): 955-963, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35593181

RESUMO

This study aimed to examine how genetic polymorphisms related to muscular strength and flexibility influence artistic gymnastic performance in an attempt to identify a novel polymorphism associated with flexibility. In study 1, the passive straight-leg-raise (PSLR) score and aromatase gene CYP19A1 rs936306 polymorphism, a key enzyme for estrogen biosynthesis, were assessed in 278 individuals. In study 2, athletes (281 gymnasts and 1908 other athletes) were asked about their competition level, and gymnasts were assessed using the difficulty score (D-score) for each event. Muscular strength- (ACTN3 R577X rs1815739 and ACE I/D rs4341) and flexibility-related (ESR1 rs2234693 T/C and CYP19A1 rs936306 C/T) genetic polymorphisms were analyzed. In study 1, males with the CYP19A1 CT + TT genotype showed significantly higher PSLR scores than those with the CC genotype. In study 2, male gymnasts with the R allele of ACTN3 R577X showed a correlation with the floor, rings, vault, and total D-scores. In addition, male gymnasts with the C allele of ESR1 T/C and T allele of CYP19A1 C/T polymorphisms were correlated with the pommel horse, parallel bars, horizontal bar, and total D-scores. Furthermore, genotype scores of these three polymorphisms correlated with the total D-scores and competition levels in male gymnasts. In contrast, no such associations were observed in female gymnasts. Our findings suggest that muscular strength- and flexibility-related polymorphisms play important roles in achieving high performance in male artistic gymnastics by specifically influencing the performance of events that require muscular strength and flexibility, respectively.HighlightsEstrogen-related CYP19A1 polymorphism is a novel determinant of flexibility in males.Muscular strength- and flexibility-related polymorphisms play important roles in high performance in male artistic gymnastics.Genotypes of ACTN3 R577X, ESR1 rs2234693, and CYP19A1 rs936306 may contribute to training plan optimization and event selection in artistic gymnastics.


Assuntos
População do Leste Asiático , Ginástica , Força Muscular , Amplitude de Movimento Articular , Feminino , Humanos , Masculino , Actinina/genética , Desempenho Atlético/fisiologia , Genótipo , Ginástica/fisiologia , Força Muscular/genética , Polimorfismo Genético , Amplitude de Movimento Articular/genética
4.
Cells ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497168

RESUMO

Muscle fiber composition is associated with physical performance, with endurance athletes having a high proportion of slow-twitch muscle fibers compared to power athletes. Approximately 45% of muscle fiber composition is heritable, however, single nucleotide polymorphisms (SNP) underlying inter-individual differences in muscle fiber types remain largely unknown. Based on three whole genome SNP datasets, we have shown that the rs236448 A allele located near the cyclin-dependent kinase inhibitor 1A (CDKN1A) gene was associated with an increased proportion of slow-twitch muscle fibers in Russian (n = 151; p = 0.039), Finnish (n = 287; p = 0.03), and Japanese (n = 207; p = 0.008) cohorts (meta-analysis: p = 7.9 × 10−5. Furthermore, the frequency of the rs236448 A allele was significantly higher in Russian (p = 0.045) and Japanese (p = 0.038) elite endurance athletes compared to ethnically matched power athletes. On the contrary, the C allele was associated with a greater proportion of fast-twitch muscle fibers and a predisposition to power sports. CDKN1A participates in cell cycle regulation and is suppressed by the miR-208b, which has a prominent role in the activation of the slow myofiber gene program. Bioinformatic analysis revealed that the rs236448 C allele was associated with increased CDKN1A expression in whole blood (p = 8.5 × 10−15) and with greater appendicular lean mass (p = 1.2 × 10−5), whereas the A allele was associated with longer durations of exercise (p = 0.044) reported amongst the UK Biobank cohort. Furthermore, the expression of CDKN1A increased in response to strength (p < 0.0001) or sprint (p = 0.00035) training. Accordingly, we found that CDKN1A expression is significantly (p = 0.002) higher in the m. vastus lateralis of strength athletes compared to endurance athletes and is positively correlated with the percentage of fast-twitch muscle fibers (p = 0.018). In conclusion, our data suggest that the CDKN1A rs236448 SNP may be implicated in the determination of muscle fiber composition and may affect athletic performance.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , Estudo de Associação Genômica Ampla , Fibras Musculares Esqueléticas , Fibras Musculares de Contração Lenta , Humanos , Atletas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares de Contração Lenta/fisiologia
5.
J Strength Cond Res ; 36(8): 2322-2325, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044361

RESUMO

ABSTRACT: Kumagai, H, Miyamoto-Mikami, E, Kikuchi, N, Kamiya, N, Zempo, H, and Fuku, N. A rs936306 C/T polymorphism in the CYP19A1 is associated with stress fractures. J Strength Cond Res 36(8): 2322-2325, 2022-A stress fracture (SF) is an overuse injury, and low bone mineral density (BMD) is the risk factor for the SF. Estrogen is suggested to have a crucial role in bone metabolism, and estrogen-related genetic polymorphisms are associated with BMD. However, the possible association between SF and estrogen-related genetic polymorphisms has not been clarified yet. Therefore, we aimed to clarify whether estrogen-related genetic polymorphisms are associated with a history of SFs in Japanese athletes. A total of 1,311 (men: n = 868, women: n = 443) top-level Japanese athletes who participated in various sports and at different levels were analyzed. The history of SFs was assessed using a questionnaire, and the cytochrome P450 aromatase gene ( CYP19A1 ) rs936306 C/T and estrogen receptor α gene ( ESR1 ) rs2234693 T/C polymorphisms were analyzed using the TaqMan genotyping assay. The genotype frequency of the CYP19A1 C/T polymorphism was significantly different between the injured group and noninjured group under the C allele additive genetic model (odds ratio = 1.31, 95% confidence interval = 1.01-1.70), especially in men and in women with irregular menstruation. On the other hand, there were no significant differences with the ESR1 T/C polymorphism. This study demonstrated that the C allele in the CYP19A1 rs936306 polymorphism is a risk factor for SFs in top-level Japanese athletes.


Assuntos
Aromatase , Fraturas de Estresse , Aromatase/genética , Densidade Óssea/genética , Estrogênios , Feminino , Fraturas de Estresse/genética , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
6.
Biochim Biophys Acta Gen Subj ; 1866(2): 130048, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728329

RESUMO

Human skeletal muscle fiber is heterogenous due to its diversity of slow- and fast-twitch fibers. In human, slow-twitched fiber gene expression is correlated to MOTS-c, a mitochondria-derived peptide that has been characterized as an exercise mimetic. Within the MOTS-c open reading frame, there is an East Asian-specific m.1382A>C polymorphism (rs111033358) that changes the 14th amino acid of MOTS-c (i.e., K14Q), a variant of MOTS-c that has less biological activity. Here, we examined the influence of the m.1382A>C polymorphism causing MOTS-c K14Q on skeletal muscle fiber composition and physical performance. The myosin heavy chain (MHC) isoforms (MHC-I, MHC-IIa, and MHC-IIx) as an indicator of muscle fiber composition were assessed in 211 Japanese healthy individuals (102 men and 109 women). Muscular strength was measured in 86 physically active young Japanese men by using an isokinetic dynamometer. The allele frequency of the m.1382A>C polymorphism was assessed in 721 Japanese athletes and 873 ethnicity-matched controls. The m.1382A>C polymorphism genotype was analyzed by TaqMan SNP Genotyping Assay. Individuals with the C allele of the m.1382A>C exhibited a higher proportion of MHC-IIx, an index of fast-twitched fiber, than the A allele carriers. Men with the C allele of m.1382A>C exhibited significantly higher peak torques of leg flexion and extension. Furthermore, the C allele frequency was higher in the order of sprint/power athletes (6.5%), controls (5.1%), and endurance athletes (2.9%). Additionally, young male mice were injected with the MOTS-c neutralizing antibody once a week for four weeks to mimic the C allele of the m.1382A>C and assessed for protein expression levels of MHC-fast and MHC-slow. Mice injected with MOTS-c neutralizing antibody showed a higher expression of MHC-fast than the control mice. These results suggest that the C allele of the East Asian-specific m.1382A>C polymorphism leads to the MOTS-c K14Q contributes to the sprint/power performance through regulating skeletal muscle fiber composition.


Assuntos
DNA Mitocondrial
7.
Med Sci Sports Exerc ; 53(9): 1855-1864, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33731655

RESUMO

PURPOSE: We aimed to investigate the hypothesis that type I collagen plays a role in increasing bone mineral density (BMD) and muscle stiffness, leading to low and high risks of fatigue fracture and muscle injury, respectively, in athletes. As a potential mechanism, we focused on the effect of the type I collagen alpha 1 chain gene (COL1A1) variant associated with transcriptional activity on bone and skeletal muscle properties. METHODS: The association between COL1A1 rs1107946 and fatigue fracture/muscle injury was evaluated in Japanese athletes. Effects of the polymorphism on tissue properties (BMD and muscle stiffness) and type I collagen α1/α2 chain ratios in muscles were examined in Japanese nonathletes. RESULTS: The C-allele carrier frequency was greater in female athletes with fatigue fracture than in those without (odds ratio = 2.44, 95% confidence interval [CI] = 1.17-5.77) and lower in female athletes with muscle injury than in those without (odds ratio = 0.46, 95% CI = 0.24-0.91). Prospective validation analysis confirmed that in female athletes, muscle injury was less frequent in C-allele carriers than in AA genotype carriers (multivariable-adjusted hazard ratio = 0.27, 95% CI = 0.08-0.96). Among female nonathletes, the C-allele of rs1107946 was associated with lower BMD and lower muscle stiffness. Muscle biopsy revealed that C-allele carriers tended to have a larger type I collagen α1/α2 chain ratio than AA genotype carriers (2.24 vs 2.05, P = 0.056), suggesting a higher proportion of type I collagen α1 homotrimers. CONCLUSION: The COL1A1 rs1107946 polymorphism exerts antagonistic effects on fatigue fracture and muscle injury among female athletes by altering the properties of these tissues, potentially owing to increased levels of type I collagen α1 chain homotrimers.


Assuntos
Colágeno Tipo I/genética , Fraturas de Estresse/genética , Predisposição Genética para Doença , Músculo Esquelético/lesões , Adulto , Feminino , Humanos , Japão , Masculino , Polimorfismo Genético , Adulto Jovem
8.
Am J Physiol Endocrinol Metab ; 320(4): E680-E690, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33554779

RESUMO

Obesity and type 2 diabetes are metabolic diseases, often associated with sarcopenia and muscle dysfunction. MOTS-c, a mitochondrial-derived peptide, acts as a systemic hormone and has been implicated in metabolic homeostasis. Although MOTS-c improves insulin sensitivity in skeletal muscle, whether MOTS-c impacts muscle atrophy is not known. Myostatin is a negative regulator of skeletal muscle mass and also one of the possible mediators of insulin resistance-induced skeletal muscle wasting. Interestingly, we found that plasma MOTS-c levels are inversely correlated with myostatin levels in human subjects. We further demonstrated that MOTS-c prevents palmitic acid-induced atrophy in differentiated C2C12 myotubes, whereas MOTS-c administration decreased myostatin levels in plasma in diet-induced obese mice. By elevating AKT phosphorylation, MOTS-c inhibits the activity of an upstream transcription factor for myostatin and other muscle wasting genes, FOXO1. MOTS-c increases mTORC2 and inhibits PTEN activity, which modulates AKT phosphorylation. Further upstream, MOTS-c increases CK2 activity, which leads to PTEN inhibition. These results suggest that through inhibition of myostatin, MOTS-c could be a potential therapy for insulin resistance-induced skeletal muscle atrophy as well as other muscle wasting phenotypes including sarcopenia.NEW & NOTEWORTHY MOTS-c, a mitochondrial-derived peptide reduces high-fat-diet-induced muscle atrophy signaling by reducing myostatin expression. The CK2-PTEN-mTORC2-AKT-FOXO1 pathways play key roles in MOTS-c action on myostatin expression.


Assuntos
Proteínas Mitocondriais/fisiologia , Atrofia Muscular/metabolismo , Miostatina/sangue , Miostatina/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Dieta Hiperlipídica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas Mitocondriais/sangue , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/sangue , Atrofia Muscular/etiologia , Miostatina/metabolismo , Ácido Palmítico , Transdução de Sinais/fisiologia , Adulto Jovem
9.
Aging (Albany NY) ; 13(2): 1692-1717, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468709

RESUMO

Type 2 Diabetes (T2D) is an emerging public health problem in Asia. Although ethnic specific mtDNA polymorphisms have been shown to contribute to T2D risk, the functional effects of the mtDNA polymorphisms and the therapeutic potential of mitochondrial-derived peptides at the mtDNA polymorphisms are underexplored. Here, we showed an Asian-specific mitochondrial DNA variation m.1382A>C (rs111033358) leads to a K14Q amino acid replacement in MOTS-c, an insulin sensitizing mitochondrial-derived peptide. Meta-analysis of three cohorts (n = 27,527, J-MICC, MEC, and TMM) show that males but not females with the C-allele exhibit a higher prevalence of T2D. In J-MICC, only males with the C-allele in the lowest tertile of physical activity increased their prevalence of T2D, demonstrating a kinesio-genomic interaction. High-fat fed, male mice injected with MOTS-c showed reduced weight and improved glucose tolerance, but not K14Q-MOTS-c treated mice. Like the human data, female mice were unaffected. Mechanistically, K14Q-MOTS-c leads to diminished insulin-sensitization in vitro. Thus, the m.1382A>C polymorphism is associated with susceptibility to T2D in men, possibly interacting with exercise, and contributing to the risk of T2D in sedentary males by reducing the activity of MOTS-c.


Assuntos
DNA Mitocondrial , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Proteínas Mitocondriais/genética , Polimorfismo de Nucleotídeo Único , Células 3T3-L1 , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Glucose/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Genes (Basel) ; 13(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35052344

RESUMO

Human muscle fiber composition is heterogeneous and mainly determined by genetic factors. A previous study reported that experimentally induced iron deficiency in rats increases the proportion of fast-twitch muscle fibers. Iron status has been reported to be affected by genetic factors. As the TMPRSS6 rs855791 T/C and HFE rs1799945 C/G polymorphisms are strongly associated with iron status in humans, we hypothesized that the genotype score (GS) based on these polymorphisms could be associated with the muscle fiber composition in humans. Herein, we examined 214 Japanese individuals, comprising of 107 men and 107 women, for possible associations of the GS for iron status with the proportion of myosin heavy chain (MHC) isoforms (I, IIa, and IIx) as markers of muscle fiber composition. No statistically significant correlations were found between the GS for iron status and the proportion of MHC isoforms in all participants. When the participants were stratified based on sex, women showed positive and negative correlations of the GS with MHC-IIa (age-adjusted p = 0.020) and MHC-IIx (age-adjusted p = 0.011), respectively. In contrast, no correlation was found in men. In women, a 1-point increase in the GS was associated with 2.42% higher MHC-IIa level and 2.72% lower MHC-IIx level. Our results suggest that the GS based on the TMPRSS6 rs855791 T/C and HFE rs1799945 C/G polymorphisms for iron status is associated with muscle fiber composition in women.


Assuntos
Genótipo , Ferro/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Adolescente , Adulto , Feminino , Humanos , Japão , Complexo Principal de Histocompatibilidade/genética , Masculino , Proteínas de Membrana/genética , Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/genética , Polimorfismo Genético , Serina Endopeptidases/genética , Adulto Jovem
11.
Int J Sports Physiol Perform ; 16(4): 489-495, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33059329

RESUMO

PURPOSE: To replicate previous genome-wide association study identified sprint-related polymorphisms in 3 different cohorts of top-level sprinters and to further validate the obtained results in functional studies. METHODS: A total of 240 Japanese, 290 Russians, and 593 Brazilians were evaluated in a case-control approach. Of these, 267 were top-level sprint/power athletes. In addition, the relationship between selected polymorphisms and muscle fiber composition was evaluated in 203 Japanese and 287 Finnish individuals. RESULTS: The G allele of the rs3213537 polymorphism was overrepresented in Japanese (odds ratio [OR]: 2.07, P = .024) and Russian (OR: 1.93, P = .027) sprinters compared with endurance athletes and was associated with an increased proportion of fast-twitch muscle fibers in Japanese (P = .02) and Finnish (P = .041) individuals. A meta-analysis of the data from 4 athlete cohorts confirmed that the presence of the G/G genotype rather than the G/A+A/A genotypes increased the OR of being a sprinter compared with controls (OR: 1.49, P = .01), endurance athletes (OR: 1.79, P = .001), or controls + endurance athletes (OR: 1.58, P = .002). Furthermore, male sprinters with the G/G genotype were found to have significantly faster personal times in the 100-m dash than those with G/A+A/A genotypes (10.50 [0.26] vs 10.76 [0.31], P = .014). CONCLUSION: The rs3213537 polymorphism found in the CPNE5 gene was identified as a highly replicable variant associated with sprinting ability and the increased proportion of fast-twitch muscle fibers, in which the homozygous genotype for the major allele (ie, the G/G genotype) is preferable for performance.


Assuntos
Desempenho Atlético , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Corrida/fisiologia , Atletas , Brasil , Frequência do Gene , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Japão , Masculino , Resistência Física , Federação Russa
12.
Front Genet ; 11: 595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612638

RESUMO

BACKGROUND: The genetic predisposition to elite athletic performance has been a controversial subject due to the underpowered studies and the small effect size of identified genetic variants. The aims of this study were to investigate the association of common single-nucleotide polymorphisms (SNPs) with endurance athlete status in a large cohort of elite European athletes using GWAS approach, followed by replication studies in Russian and Japanese elite athletes and functional validation using metabolomics analysis. RESULTS: The association of 476,728 SNPs of Illumina DrugCore Gene chip and endurance athlete status was investigated in 796 European international-level athletes (645 males, 151 females) by comparing allelic frequencies between athletes specialized in sports with high (n = 662) and low/moderate (n = 134) aerobic component. Replication of results was performed by comparing the frequencies of the most significant SNPs between 242 and 168 elite Russian high and low/moderate aerobic athletes, respectively, and between 60 elite Japanese endurance athletes and 406 controls. A meta-analysis has identified rs1052373 (GG homozygotes) in Myosin Binding Protein (MYBPC3; implicated in cardiac hypertrophic myopathy) gene to be associated with endurance athlete status (P = 1.43 × 10-8, odd ratio 2.2). Homozygotes carriers of rs1052373 G allele in Russian athletes had significantly greater VO2 max than carriers of the AA + AG (P = 0.005). Subsequent metabolomics analysis revealed several amino acids and lipids associated with rs1052373 G allele (1.82 × 10-05) including the testosterone precursor androstenediol (3beta,17beta) disulfate. CONCLUSIONS: This is the first report of genome-wide significant SNP and related metabolites associated with elite athlete status. Further investigations of the functional relevance of the identified SNPs and metabolites in relation to enhanced athletic performance are warranted.

13.
Eur J Appl Physiol ; 120(3): 665-673, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31970519

RESUMO

PURPOSE: Iron is an important component of the oxygen-binding proteins and may be critical to optimal athletic performance. Previous studies have suggested that the G allele of C/G rare variant (rs1799945), which causes H63D amino acid replacement, in the HFE is associated with elevated iron indexes and may give some advantage in endurance-oriented sports. The aim of the present study was to investigate the association between the HFE H63D polymorphism and elite endurance athlete status in Japanese and Russian populations, aerobic capacity and to perform a meta-analysis using current findings and three previous studies. METHODS: The study involved 315 international-level endurance athletes (255 Russian and 60 Japanese) and 809 healthy controls (405 Russian and 404 Japanese). Genotyping was performed using micro-array analysis or by PCR. VO2max in 46 male Russian endurance athletes was determined using gas analysis system. RESULTS: The frequency of the iron-increasing CG/GG genotypes was significantly higher in Russian (38.0 vs 24.9%; OR 1.85, P = 0.0003) and Japanese (13.3 vs 5.0%; OR 2.95, P = 0.011) endurance athletes compared to ethnically matched controls. The meta-analysis using five cohorts (two French, Japanese, Spanish, and Russian; 586 athletes and 1416 controls) showed significant prevalence of the CG/GG genotypes in endurance athletes compared to controls (OR 1.96, 95% CI 1.58-2.45; P = 1.7 × 10-9). Furthermore, the HFE G allele was associated with high V̇O2max in male athletes [CC: 61.8 (6.1), CG/GG: 66.3 (7.8) ml/min/kg; P = 0.036]. CONCLUSIONS: We have shown that the HFE H63D polymorphism is strongly associated with elite endurance athlete status, regardless ethnicities and aerobic capacity in Russian athletes.


Assuntos
Proteína da Hemocromatose/genética , Resistência Física/genética , Atletas , Estudos de Casos e Controles , Humanos , Polimorfismo de Nucleotídeo Único
14.
BMC Med Genet ; 20(1): 192, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791263

RESUMO

BACKGROUND: Poor joint flexibility has been repeatedly proposed as a risk factor for muscle injury. The C-to-T polymorphism (rs12722) in the 3'-untranslated region of the collagen type V α1 chain gene (COL5A1) is reportedly associated with joint flexibility. Flexibility of a normal joint is largely determined by passive muscle stiffness, which is influenced by intramuscular collagenous connective tissues including type V collagen. The present study aimed to test the hypothesis that the COL5A1 rs12722 polymorphism influences joint flexibility via passive muscle stiffness, and is accordingly associated with the incidence of muscle injury. METHODS: In Study 1, we examined whether the rs12722 polymorphism is associated with joint flexibility and passive muscle stiffness in 363 healthy young adults. Joint flexibility was evaluated by passive straight-leg-raise and sit-and-reach tests, and passive muscle stiffness was measured using ultrasound shear wave elastography. In Study 2, the association of the rs12722 polymorphism with sports-related muscle injury was assessed in 1559 Japanese athletes. Muscle injury history and severity were assessed by a questionnaire. In both Study 1 and Study 2, the rs12722 C-to-T polymorphism in the COL5A1 was determined using the TaqMan SNP Genotyping Assay. RESULTS: Study 1 revealed that the rs12722 polymorphism had no significant effect on range of motion in passive straight-leg-raise and sit-and-reach tests. Furthermore, there was no significant difference in passive muscle stiffness of the hamstring among the rs12722 genotypes. In Study 2, rs12722 genotype frequencies did not differ between the muscle injury and no muscle injury groups. Moreover, no association was observed between rs12722 polymorphism and severity of muscle injury. CONCLUSIONS: The present study does not support the view that COL5A1 rs12722 polymorphism has a role as a risk factor for sports-related muscle injury, or that it is a determinant for passive muscle stiffness in a Japanese population.


Assuntos
Traumatismos em Atletas/genética , Colágeno Tipo V/genética , Músculo Esquelético/lesões , Polimorfismo de Nucleotídeo Único , Amplitude de Movimento Articular/genética , Esportes , Adolescente , Feminino , Humanos , Japão , Masculino , Fatores de Risco , Adulto Jovem
15.
Med Sci Sports Exerc ; 51(1): 19-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113520

RESUMO

PURPOSE: Muscle injury is the most common sports injury. Muscle stiffness, a risk factor for muscle injury, is lower in females than in males, implying that sex-related genetic polymorphisms influence muscle injury associated with muscle stiffness. The present study aimed to clarify the associations between two genetic polymorphisms (rs2234693 and rs9340799) in the estrogen receptor 1 gene (ESR1) and muscle injury or muscle stiffness. METHODS: In study 1, a questionnaire was used to assess the muscle injury history of 1311 Japanese top-level athletes. In study 2, stiffness of the hamstring muscles was assessed using ultrasound shear wave elastography in 261 physically active young adults. In both studies, rs2234693 C/T and rs9340799 G/A polymorphisms in the ESR1 were analyzed using the TaqMan SNP Genotyping Assay. RESULTS: In study 1, genotype frequencies for ESR1 rs2234693 C/T were significantly different between the injured and noninjured groups in a C-allele dominant (CC + CT vs TT: odds ratio, 0.62; 95% confidence interval, 0.43-0.91) and additive (CC vs CT vs TT: odds ratio, 0.70; 95% confidence interval, 0.53-0.91) model in all athletes. In study 2, hamstring muscle stiffness was lower in subjects with the CC + CT genotype than in those with the TT genotype; a significant linear trend (CC < CT < TT) was found (r = 0.135, P = 0.029). In contrast, no associations were observed between ESR1 rs9340799 G/A and muscle injury or stiffness. CONCLUSIONS: Our results suggest that the ESR1 rs2234693 C allele, in contrast to the T allele, provides protection against muscle injury by lowering muscle stiffness.


Assuntos
Traumatismos em Atletas/genética , Receptor alfa de Estrogênio/genética , Tono Muscular/genética , Músculo Esquelético/lesões , Polimorfismo de Nucleotídeo Único , Alelos , Traumatismos em Atletas/diagnóstico por imagem , Estudos Transversais , Técnicas de Imagem por Elasticidade , Feminino , Genótipo , Músculos Isquiossurais/diagnóstico por imagem , Músculos Isquiossurais/lesões , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagem , Fatores de Risco , Adulto Jovem
16.
Biol Sport ; 35(2): 105-109, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30455538

RESUMO

We aimed to replicate, in a specific athletic event cohort (only track and field) and in two different ethnicities (Japanese and East European, i.e. Russian and Polish), original findings showing the association of the angiotensin-II receptor type-2 gene (AGTR2) rs11091046 A>C polymorphism with athlete status. We compared genotypic frequencies of the AGTR2 rs11091046 polymorphism among 282 track and field sprint/power athletes (200 men and 82 women), including several national record holders and Olympic medallists (214 Japanese, 68 Russian and Polish), and 2024 control subjects (842 men and 1182 women) (804 Japanese, 1220 Russian and Polish). In men, a meta-analysis from the two combined cohorts showed a significantly higher frequency of the C allele in athletes than in controls (odds ratio: 1.62, P=0.008, heterogeneity index I 2 =0%). With regard to respective cohorts, C allele frequency was higher in Japanese male athletes than in controls (67.7% vs. 55.9%, P=0.022), but not in Russian/Polish male athletes (61.9% vs. 51.0%, P=0.172). In women, no significant results were obtained by meta-analysis for the two cohorts combination (P=0.850). The AC genotype frequency was significantly higher in Russian/Polish women athletes than in controls (69.2% vs. 42.1%, P=0.022), but not in Japanese women athletes (P=0.226). Our results, in contrast to previous findings, suggested by meta-analysis that the C allele of the AGTR2 rs11091046 polymorphism is associated with sprint/power track and field athlete status in men, but not in women.

17.
J Appl Physiol (1985) ; 124(5): 1377-1384, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29345962

RESUMO

Genetic polymorphisms and sex differences are suggested to affect muscle fiber composition; however, no study has investigated the effects of genetic polymorphisms on muscle fiber composition with respect to sex differences. Therefore, the present study examined the effects of genetic polymorphisms on muscle fiber composition with respect to sex differences in the Japanese population. The present study included 211 healthy Japanese individuals (102 men and 109 women). Muscle biopsies were obtained from the vastus lateralis to determine the proportion of myosin heavy chain (MHC) isoforms (MHC-I, MHC-IIa, and MHC-IIx). Moreover, we analyzed polymorphisms in α-actinin-3 gene ( ACTN3; rs1815739 ), angiotensin-converting enzyme gene ( ACE; rs4341 ), hypoxia-inducible factor 1 α gene ( rs11549465 ), vascular endothelial growth factor receptor 2 gene ( rs1870377 ), and angiotensin II receptor, type 2 gene ( rs11091046 ), by TaqMan single-nucleotide polymorphism genotyping assays. The proportion of MHC-I was 9.8% lower in men than in women, whereas the proportion of MHC-IIa and MHC-IIx was higher in men than in women (5.0 and 4.6%, respectively). Men with the ACTN3 RR + RX genotype had a 4.8% higher proportion of MHC-IIx than those with the ACTN3 XX genotype. Moreover, men with the ACE ID + DD genotype had a 4.7% higher proportion of MHC-I than those with the ACE II genotype. Furthermore, a combined genotype of ACTN3 R577X and ACE insertion/deletion (I/D) was significantly correlated with the proportion of MHC-I ( r = -0.23) and MHC-IIx ( r = 0.27) in men. In contrast, no significant correlation was observed between the examined polymorphisms and muscle fiber composition in women. These results suggest that the ACTN3 R577X and ACE I/D polymorphisms independently affect the proportion of human skeletal muscle fibers MHC-I and MHC-IIx in men but not in women. NEW & NOTEWORTHY In men, the RR + RX genotype of the α-actinin-3 gene ( ACTN3) R577X polymorphism was associated with a higher proportion of myosin heavy chain (MHC)-IIx. The ID + DD genotype of the angiotensin-converting enzyme gene ( ACE) insertion/deletion (I/D) polymorphism, in contrast to a previous finding, was associated with a higher proportion of MHC-I in men. In addition, the combined genotype of these polymorphisms was correlated with the proportion of MHC-I and MHC-IIx in men. Thus ACTN3 R577X and ACE I/D polymorphisms influence the muscle fiber composition in Japanese men.


Assuntos
Povo Asiático/genética , Fibras Musculares Esqueléticas/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Actinina/genética , Adulto , Feminino , Genótipo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Cadeias Pesadas de Miosina/genética , Receptor Tipo 2 de Angiotensina/genética , Renina/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Adulto Jovem
18.
BMC Genomics ; 18(Suppl 8): 803, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29143599

RESUMO

BACKGROUND: Forkhead box O3A (FOXOA3) and apolipoprotein E (APOE) are arguably the strongest gene candidates to influence human exceptional longevity (EL, i.e., being a centenarian), but inconsistency exists among cohorts. Epistasis, defined as the effect of one locus being dependent on the presence of 'modifier genes', may contribute to explain the missing heritability of complex phenotypes such as EL. We assessed the potential association of epistasis among candidate polymorphisms related to physical capacity, as well as antioxidant defense and cardiometabolic traits, and EL in the Japanese population. A total of 1565 individuals were studied, subdivided into 822 middle-aged controls and 743 centenarians. RESULTS: We found a FOXOA3 rs2802292 T-allele-dependent association of fibronectin type III domain-containing 5 (FDNC5) rs16835198 with EL: the frequency of carriers of the FOXOA3 rs2802292 T-allele among individuals with the rs16835198 GG genotype was significantly higher in cases than in controls (P < 0.05). On the other hand, among non-carriers of the APOE 'risk' ε4-allele, the frequency of the FDNC5 rs16835198 G-allele was higher in cases than in controls (48.4% vs. 43.6%, P < 0.05). Among carriers of the 'non-risk' APOE ε2-allele, the frequency of the rs16835198 G-allele was higher in cases than in controls (49% vs. 37.3%, P < 0.05). CONCLUSIONS: The association of FDNC5 rs16835198 with EL seems to depend on the presence of the FOXOA3 rs2802292 T-allele and we report a novel association between FNDC5 rs16835198 stratified by the presence of the APOE ε2/ε4-allele and EL. More research on 'gene*gene' and 'gene*environment' effects is needed in the field of EL.


Assuntos
Apolipoproteínas E/genética , Epistasia Genética , Exercício Físico , Fibronectinas/genética , Proteína Forkhead Box O3/genética , Longevidade/genética , Adulto , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
19.
Int J Sports Med ; 38(5): 402-406, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28303562

RESUMO

α-Actinin-3 (ACTN3) R577X polymorphism is associated with muscular strength and power. This study was performed to investigate the association between ACTN3 R577X polymorphisms and flexibility as another component of fitness in 2 cohorts. Cohort 1 consisted of 208 men and 568 women (ages 23-88), while Cohort 2 consisted of 529 men and 728 women (ages 23-87). All participants were recruited from the Tokyo metropolitan area and underwent a battery of tests to assess their grip strength and sit-and-reach flexibility. Genotyping results were analyzed for ACTN3 (rs1815739) polymorphism using the TaqMan approach. In Cohort 1, sit-and-reach in the RR genotype (35.3±0.7 cm) was significantly lower than those in the RX and XX genotypes (37.2±0.3 cm) even after adjusting for sex, age, and exercise habit as covariates (P<0.01). In Cohort 2, sit-and-reach tended to be lower in RR (38.1±0.6 cm) than in RX and XX (39.1±0.3 cm), but the differences were not significant (P=0.114). Analysis in pooled subjects indicated that RR was associated with significantly lower flexibility than RX and XX (P=0.009). The RR genotype of ACTN3 R577X in the general Japanese population showed lower flexibility compared to the RX and XX genotypes.


Assuntos
Actinina/genética , Povo Asiático/genética , Músculo Esquelético/fisiologia , Aptidão Física/fisiologia , Polimorfismo Genético , Tronco/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Genótipo , Força da Mão/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...