Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(9)2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37759801

RESUMO

The presenilin-1 (PSEN1) gene is crucial in developing Alzheimer's disease (AD), a progressive neurodegenerative disorder and the most common cause of dementia. Circular RNAs (circRNAs) are non-coding RNA generated through back-splicing, resulting in a covalently closed circular molecule. This study aimed to investigate PSEN1-gene-derived circular RNAs (circPSEN1s) and their potential functions in AD. Our in silico analysis indicated that circPSEN1s (hsa_circ_0008521 and chr14:73614502-73614802) act as sponge molecules for eight specific microRNAs. Surprisingly, two of these miRNAs (has-mir-4668-5p and has-mir-5584-5p) exclusively interact with circPSEN1s rather than mRNA-PSEN1. Furthermore, the analysis of pathways revealed that these two miRNAs predominantly target mRNAs associated with the PI3K-Akt signaling pathway. With sponging these microRNAs, circPSEN1s were found to protect mRNAs commonly targeted by these miRNAs, including QSER1, BACE2, RNF157, PTMA, and GJD3. Furthermore, the miRNAs sequestered by circPSEN1s have a notable preference for targeting the TGF-ß and Hippo signaling pathways. We also demonstrated that circPSEN1s potentially interact with FOXA1, ESR1, HNF1B, BRD4, GATA4, EP300, CBX3, PRDM9, and PPARG proteins. These proteins have a prominent preference for targeting the TGF-ß and Notch signaling pathways, where EP300 and FOXA1 have the highest number of protein interactions. Molecular docking analysis also confirms the interaction of these hub proteins and Aß42 with circPSEN1s. Interestingly, circPSEN1s-targeted molecules (miRNAs and proteins) impacted TGF-ß, which served as a shared signaling pathway. Finally, the analysis of microarray data unveiled distinct expression patterns of genes influenced by circPSEN1s (WTIP, TGIF, SMAD4, PPP1CB, and BMPR1A) in the brains of AD patients. In summary, our findings suggested that the interaction of circPSEN1s with microRNAs and proteins could affect the fate of specific mRNAs, interrupt the function of unique proteins, and influence cell signaling pathways, generally TGF-ß. Further research is necessary to validate these findings and gain a deeper understanding of the precise mechanisms and significance of circPSEN1s in the context of AD.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , RNA Circular/genética , Doença de Alzheimer/genética , Presenilina-1/genética , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , Epigênese Genética/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Correpressoras/genética
2.
Int J Reprod Biomed ; 21(7): 577-584, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37727396

RESUMO

Background: Varicocele is characterized by abnormal dilation of the testicular vein, which results in hypoxia, the accumulation of reactive oxygen species, and the production of proinflammatory cytokines. It seems that a group of cytosolic receptors named nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome, is activated and involved in the pathogenesis of varicocele. Objective: We aim to determine the time course of NLRP3 inflammasome expression in the testis tissue following varicocele induction. Materials and Methods: In this experimental study, 36 adult Wistar rats (8 wk, 200-250 gr) were used. For the varicocele induction, the left renal vein was partially ligated. The mRNA levels of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain, and caspase-1 were evaluated by real-time polymerase chain reaction at 1, 2, 4, 8, and 12 wk after varicocele induction. Results: Results showed that the gene expression of NLRP3 inflammasome component including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain, and caspase-1 did not alter during week 1, 2, 4, and 8 after operation (p = 0.09). 12 wk after varicocele induction, gene expression levels were significantly up-regulated (p = 0.02). Conclusion: Our data provides clear evidence that varicocele stimulates inflammasome activation in the testis tissue 12 wk after the operation, and this time is required for investigating NLRP3 activity in the varicocele rat model.

4.
Cytokine ; 168: 156235, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37267677

RESUMO

BACKGROUND: Identifying mutual neuroinflammatory axis in different experimental models of multiple sclerosis (MS) is essential to evaluate the de- and re-myelination processes and improve therapeutic interventions' reproducibility. METHODS: The expression profile data set of EAE (GSE47900) and cuprizone (GSE100663) models were downloaded from the Gene Expression Omnibus database. The R package and GEO2R software processed these raw chip data. Gene Ontology (GO) functional analysis, KEGG pathway analysis, and protein-protein interaction network analysis were performed to investigate interactions between common differentially expressed genes (DEGs) in all models. Finally, the ELISA method assessed the protein level of highlighted mutual cytokines in serum. RESULTS: Our data introduced 59 upregulated [CXCL10, CCL12, and GBP6 as most important] and 17 downregulated [Serpinb1a, Prr18, and Ugt8a as most important] mutual genes. The signal transducer and activator of transcription 1 (STAT1) and CXCL10 were the most crucial hub proteins among mutual upregulated genes. These mutual genes were found to be mainly involved in the TNF-α, TLRs, and complement cascade signaling, and animal models shared 26 mutual genes with MS individuals. Finally, significant upregulation of serum level of TNF-α/IL-1ß/CXCL10 cytokines was confirmed in all models in a relatively similar pattern. CONCLUSION: For the first time, our study revealed the common neuroinflammatory pathway in animal models of MS and introduced candidate hub genes for better evaluating the preclinical efficacy of pharmacological interventions and designing prospective targeted therapies.


Assuntos
Perfilação da Expressão Gênica , Esclerose Múltipla , Animais , Perfilação da Expressão Gênica/métodos , Fator de Necrose Tumoral alfa/genética , Esclerose Múltipla/genética , Reprodutibilidade dos Testes , Estudos Prospectivos , Transdução de Sinais/genética , Citocinas/genética , Biologia Computacional/métodos
5.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240031

RESUMO

Spinal cord injury (SCI) results in the production of proinflammatory cytokines due to inflammasome activation. Lipocalin 2 (LCN2) is a small secretory glycoprotein upregulated by toll-like receptor (TLR) signaling in various cells and tissues. LCN2 secretion is induced by infection, injury, and metabolic disorders. In contrast, LCN2 has been implicated as an anti-inflammatory regulator. However, the role of LCN2 in inflammasome activation during SCI remains unknown. This study examined the role of Lcn2 deficiency in the NLRP3 inflammasome-dependent neuroinflammation in SCI. Lcn2-/- and wild-type (WT) mice were subjected to SCI, and locomotor function, formation of the inflammasome complex, and neuroinflammation were assessed. Our findings demonstrated that significant activation of the HMGB1/PYCARD/caspase-1 inflammatory axis was accompanied by the overexpression of LCN2 7 days after SCI in WT mice. This signal transduction results in the cleaving of the pyroptosis-inducing protein gasdermin D (GSDMD) and the maturation of the proinflammatory cytokine IL-1ß. Furthermore, Lcn2-/- mice showed considerable downregulation in the HMGB1/NLRP3/PYCARD/caspase-1 axis, IL-1ß production, pore formation, and improved locomotor function compared with WT. Our data suggest that LCN2 may play a role as a putative molecule for the induction of inflammasome-related neuroinflammation in SCI.


Assuntos
Proteína HMGB1 , Traumatismos da Medula Espinal , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipocalina-2/genética , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Doenças Neuroinflamatórias , Traumatismos da Medula Espinal/metabolismo , Citocinas/metabolismo , Caspases/metabolismo , Piroptose/fisiologia
6.
Biomolecules ; 13(3)2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36979479

RESUMO

Anxiety-related disorders (ARDs) are chronic neuropsychological diseases and the sixth leading cause of disability in the world. As dysregulation of microRNAs (miRs) are observed in the pathological course of neuropsychiatric disorders, the present study aimed to introduce miRs that underlie anxiety processing in the brain. First, we collected the experimentally confirmed anxiety-related miRNAs (ARmiRs), predicted their target transcripts, and introduced critical cellular pathways with key commune hub genes. As a result, we have found nine anxiolytic and ten anxiogenic ARmiRs. The anxiolytic miRs frequently target the mRNA of Acyl-CoA synthetase long-chain family member 4 (Acsl4), AFF4-AF4/FMR2 family member 4 (Aff4), and Krüppel like transcription factor 4 (Klf4) genes, where miR-34b-5p and miR-34c-5p interact with all of them. Moreover, the anxiogenic miRs frequently target the mRNA of nine genes; among them, only two miR (miR-142-5p and miR-218-5p) have no interaction with the mRNA of trinucleotide repeat-containing adaptor 6B (Tnrc6b), and miR-124-3p interacts with all of them where MAPK is the main signaling pathway affected by both anxiolytic and anxiogenic miR. In addition, the anxiolytic miR commonly target E2F transcription factor 5 (E2F5) in the TGF-ß signaling pathway, and the anxiogenic miR commonly target Ataxin 1 (Atxn1), WASP-like actin nucleation promoting factor (Wasl), and Solute Carrier Family 17 Member 6 (Slc17a6) genes in the notch signaling, adherence junction, and synaptic vesicle cycle pathways, respectively. Taken together, we conclude that the most important anxiolytic (miR-34c, Let-7d, and miR-17) and anxiogenic (miR-19b, miR-92a, and 218) miR, as hub epigenetic modulators, potentially influence the pathophysiology of anxiety, primarily via interaction with the MAPK signaling pathway. Moreover, the role of E2F5 as a novel putative target for anxiolytic miRNAs in ARDs disorders deserves further exploration.


Assuntos
Ansiolíticos , MicroRNAs , Síndrome do Desconforto Respiratório , Humanos , Ansiolíticos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ansiedade/genética , RNA Mensageiro , Fatores de Elongação da Transcrição/metabolismo , Fator de Transcrição E2F5/metabolismo , Proteínas de Ligação a RNA
7.
Glia ; 70(11): 2188-2206, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35856297

RESUMO

Multiple sclerosis (MS) is a central nervous system disease characterized by both degenerative and inflammatory processes. Various mediators are involved in the interplay of degeneration and innate immunity on one hand and peripheral adaptive immunity on the other hand. The secreted protein lipocalin 2 (LCN2) is an inflammatory modulator in a variety of pathologies. Although elevated intrathecal levels of LCN2 have been reported in MS patients, it's functional role is widely unknown. Here, we identified a subpopulation of astrocytes as a source of LCN2 in MS lesions and respective animal models. We investigated the functional role of LCN2 for both autoimmune and degenerative aspects in three MS mouse models including both wild type (WT) and Lcn2-/- mouse strains. While the experimental autoimmune encephalomyelitis (EAE) model reflects primary autoimmunity, the cuprizone model reflects selective oligodendrocyte loss and demyelination. In addition, we included a combinatory Cup/EAE model in which primary cytodegeneration is followed by inflammatory lesions within the forebrain. While in the EAE model, the disease outcome was comparable in between the two mouse strains, cuprizone intoxicated Lcn2-/- animals showed an increased loss of oligodendrocytes. In the Cup/EAE model, Lcn2-/- animals showed increased inflammation when compared to WT mice. Together, our results highlight LCN2 as a potentially protective molecule in MS lesion formation, which might be able to limit loss of oligodendrocytes immune-cell invasion. Despite these findings, it is not yet clear which glial cell phenotype (and to which extent) contributes to the observed neuroprotective effects, that is, microglia and/or astroglia or even endothelial cells in the brain.


Assuntos
Encefalomielite Autoimune Experimental , Lipocalina-2/metabolismo , Esclerose Múltipla , Animais , Cuprizona , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Células Endoteliais/metabolismo , Lipocalina-2/genética , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Oligodendroglia/metabolismo , Prosencéfalo/patologia
8.
J Neuroinflammation ; 19(1): 134, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668451

RESUMO

BACKGROUND: Spinal cord injury (SCI) induces a multitude of deleterious processes, including neuroinflammation and oxidative stress (OS) which contributed to neuronal damage and demyelination. Recent studies have suggested that increased formation of reactive oxygen species (ROS) and the consequent OS are critical events associated with SCI. However, there is still little information regarding the impact of these events on SCI. Astrocytes are key regulators of oxidative homeostasis in the CNS and astrocytic antioxidant responses promote the clearance of oxidants produced by neurons. Therefore, dysregulation of astrocyte physiology might largely contribute to oxidative damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) is the main transcriptional regulator of cellular anti-oxidative stress responses. METHODS: In the current study, we hypothesized that astrocytic activation of Nrf2 protects the spinal cord post injury via suppression of neuroinflammation. Thus, using mice line with a GFAP-specific kelch-like ECH-associated protein 1 (Keap1)-deletion, we induced a hyperactivation of Nrf2 in astrocytes and further its effects on SCI outcomes. SCI-induction was performed in mice using the Infinite Horizon Spinal Cord Impactor with a force of 60 kdyn. To assess the quantitative pattern of Nrf2/ARE-activation, we included transgenic ARE-Luc mice. Data were analyzed with GraphPad Prism 8 (GraphPad Software Inc., San Diego, CA, USA). Brown-Forsythe test was performed to test for equal variances and normal distribution was tested with Shapiro-Wilk. RESULTS: In ARE-Luc mice, a significant induction of luciferase-activity was observed as early as 1 day post-injury, indicating a functional role of Nrf2-activity at the epicenter of SCI. Furthermore, SCI induced loss of neurons and oligodendrocytes, demyelination and inflammation in wild type mice. The loss of myelin and oligodendrocytes was clearly reduced in Keap1 KO mice. In addition, Keap-1 KO mice showed a significantly better locomotor function and lower neuroinflammation responses compared to wild type mice. CONCLUSIONS: In summary, our in vivo bioluminescence data showed Nrf2-ARE activation during primary phase of SCI. Furthermore, we found that cell specific hyperactivation of Nrf2 was sufficient to protect the spinal cord against injury which indicate a promising therapeutic approach for SCI-treatment.


Assuntos
Doenças Desmielinizantes , Traumatismos da Medula Espinal , Animais , Masculino , Camundongos , Astrócitos/metabolismo , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
9.
Life Sci ; 304: 120726, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750202

RESUMO

AIMS: Spinal cord injury (SCI) is a debilitating neurological condition often associated with chronic neuroinflammation and redox imbalance. Oxidative stress is one of the main hallmark of secondary injury of SCI which is tightly regulated by nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE) signaling. In this study, we aimed at investigating the interplay between inflammation-related miRNAs and the Nrf2 pathway in animal model of SCI. MATERIALS AND METHODS: The expression of selected four validated miRNA-target pairs (miRNA223-3p, miRNA155-5p, miRNA145-5p, and miRNA124-3p) was examined at different time points (6 h, 12 h, 1 day, 3 day and 7 day) after SCI. Further, using GFAP-specific kelch-like ECH-associated protein 1 deletion (Keap1-/-) and whole-body Nrf2-/- knockout mice, we investigated the potential interplay between each miRNA and the Keap1/Nrf2 signaling system. KEY FINDINGS: The expression of all miRNAs except miRNA155-5p significantly increased 24 h after SCI and decreased after 7 days. Interestingly, Keap1-/- mice only showed significant increase in the miRNA145-5p after 24 h SCI compared to the WT group. In addition, Keap1-/- mice showed significant decrease in CXCL10/12 (CXCL12 increased in Nrf2-/- mice), and TNF-α, and an increase in Mn-SOD and NQO-1 (Mn-SOD and NQO-1 decreased in Nrf2-/- mice) compared to WT mice. SIGNIFICANCE: Our results suggest that astrocytic hyperactivation of Nrf2 exert neuroprotective effects at least in part through the upregulation of miRNA145-5p, a negative regulator of astrocyte proliferation, and induction of ARE in early phase of SCI. Further studies are needed to investigate the potential interplay between Nrf2 and miRNA145-5p in neuroinflammatory condition.


Assuntos
MicroRNAs , Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Animais , Elementos de Resposta Antioxidante/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Transdução de Sinais , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo
10.
Cells ; 10(11)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34831370

RESUMO

Omega-3 polyunsaturated fatty acids (PUFA n3) ameliorate inflammation in different diseases and potentially improve neurological function after neuronal injury. Following spinal cord injury (SCI), inflammatory events result in caspase-1 mediated activation of interleukin-1 beta (IL-1b) and 18. We aim to evaluate the neuroprotective potency of PUFA n3 in suppressing the formation and activation of inflammasomes following SCI. Male Wistar rats were divided into four groups: control, SCI, SCI+PUFA n3, and SCI+Lipofundin MCT (medium-chain triglyceride; vehicle). PUFA n3 or vehicle was intravenously administered immediately after SCI and every 24 h for the next three days. We analyzed the expression of NLRP3, NLRP1, ASC, caspase-1, IL-1b, and 18 in the spinal cord. The distribution of microglia, oligodendrocytes, and astrocytes was assessed by immunohistochemistry analysis. Behavioral testing showed significantly improved locomotor recovery in PUFA n3-treated animals and the SCI-induced upregulation of inflammasome components was reduced. Histopathological evaluation confirmed the suppression of microgliosis, increased numbers of oligodendrocytes, and the prevention of demyelination by PUFA n3. Our data support the neuroprotective role of PUFA n3 by targeting the NLRP3 inflammasome. These findings provide evidence that PUFA n3 has therapeutic effects which potentially attenuate neuronal damage in SCI and possibly also in other neuronal injuries.


Assuntos
Ácidos Graxos Ômega-3/uso terapêutico , Inflamassomos/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/patologia , Citocinas/sangue , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-3/farmacologia , Mediadores da Inflamação/sangue , Masculino , Neuroglia/metabolismo , Neuroglia/patologia , Ratos Wistar , Recuperação de Função Fisiológica , Remielinização , Traumatismos da Medula Espinal/sangue , Traumatismos da Medula Espinal/fisiopatologia
11.
Neurotox Res ; 39(6): 1732-1746, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34570348

RESUMO

Multiple sclerosis (MS) is a chronic disorder characterized by reactive gliosis, inflammation, and demyelination. Microglia plays a crucial role in the pathogenesis of MS and has the dynamic plasticity to polarize between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Metformin, a glucose-lowering drug, attenuates inflammatory responses by activating adenosine monophosphate protein kinase (AMPK) which suppresses nuclear factor kappa B (NF-κB). In this study, we indirectly investigated whether metformin therapy would regulate microglia activity in the cuprizone (CPZ)-induced demyelination mouse model of MS via measuring the markers associated with pro- and anti-inflammatory microglia. Evaluation of myelin by luxol fast blue staining revealed that metformin treatment (CPZ + Met) diminished demyelination, in comparison to CPZ mice. In addition, metformin therapy significantly alleviated reactive microgliosis and astrogliosis in the corpus callosum, as measured by Iba-1 and GFAP staining. Moreover, metformin treatment significantly downregulated the expression of pro-inflammatory associated genes (iNOS, H2-Aa, and TNF-α) in the corpus callosum, whereas expression of anti-inflammatory markers (Arg1, Mrc1, and IL10) was not promoted, compared to CPZ mice. Furthermore, protein levels of iNOS (pro-inflammatory marker) were significantly decreased in the metformin group, while those of Trem2 (anti-inflammatory marker) were increased. In addition, metformin significantly increased AMPK activation in CPZ mice. Finally, metformin administration significantly reduced the activation level of NF-κB in CPZ mice. In summary, our data revealed that metformin attenuated pro-inflammatory microglia markers through suppressing NF-κB activity. The positive effects of metformin on microglia and remyelination suggest that it could be used as a promising candidate to lessen the incidence of inflammatory neurodegenerative diseases such as MS.


Assuntos
Metformina/uso terapêutico , Microglia/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , NF-kappa B/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Western Blotting , Cuprizona/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Transcriptoma/efeitos dos fármacos
12.
Mol Neurobiol ; 58(11): 5907-5919, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34417948

RESUMO

Lipocalin 2 (LCN2), an immunomodulator, regulates various cellular processes such as iron transport and defense against bacterial infection. Under pathological conditions, LCN2 promotes neuroinflammation via the recruitment and activation of immune cells and glia, particularly microglia and astrocytes. Although it seems to have a negative influence on the functional outcome in spinal cord injury (SCI), the extent of its involvement in SCI and the underlying mechanisms are not yet fully known. In this study, using a SCI contusion mouse model, we first investigated the expression pattern of Lcn2 in different parts of the CNS (spinal cord and brain) and in the liver and its concentration in blood serum. Interestingly, we could note a significant increase in LCN2 throughout the whole spinal cord, in the brain, liver, and blood serum. This demonstrates the diversity of its possible sites of action in SCI. Furthermore, genetic deficiency of Lcn2 (Lcn2-/-) significantly reduced certain aspects of gliosis in the SCI-mice. Taken together, our studies provide first valuable hints, suggesting that LCN2 is involved in the local and systemic effects post SCI, and might modulate the impairment of different peripheral organs after injury.


Assuntos
Lipocalina-2/fisiologia , Doenças Neuroinflamatórias/metabolismo , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Gliose/metabolismo , Lipocalina-2/sangue , Lipocalina-2/deficiência , Lipocalina-2/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos , Paraplegia/etiologia , Paraplegia/fisiopatologia , RNA Mensageiro/biossíntese
13.
Brain Res ; 1763: 147446, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33766517

RESUMO

The activation of the CXCL12-CXCR4 signaling axis is implicated in the regulation of cell survival, proliferation, and mobilization of bone marrow stem cells into the injured site. We have shown in a previous study that intrathecal administration of CXCL12 reduces spinal cord tissue damage and neuroinflammation and provides functional improvement by reducing inflammasome activity and local inflammatory processes in an experimental spinal cord injury (SCI) rat model. Here, we aimed at investigating whether these neuroprotective effects rely on the control of CXCL12 signaling on microglial activation as microglia cells are known to be the primary immune cells of the brain. LPS induced the expression of the inflammasome components NLRP3, NLRC4 and ASC, the secretion of the cytokines IL-1b and IL-18 and the activation of caspase-1 protease in BV2 cells. Pre-treatment with CXCL12 significantly reduced LPS-induced IL-1b/IL-18 secretion and inflammasome induction. Our results also showed that CXCL12 can suppress caspase-1 activity, which leads to a decrease of SCI-related induction of active IL-1b.


Assuntos
Quimiocina CXCL12/farmacologia , Inflamassomos/antagonistas & inibidores , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 1/metabolismo , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Camundongos , Microglia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores CXCR4/metabolismo
14.
Acta Histochem ; 123(3): 151700, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33667778

RESUMO

BACKGROUND: Thyroid carcinoma is the most common endocrine malignancy and anaplastic thyroid carcinoma (ATC) is a rare but most aggressive cancer. Melatonin has enhanced or induced apoptosis in many different cancer cells, however, there has not been any study on the effects of melatonin in the treatment of ATC. In this study, we examined the effect of melatonin on cytotoxicity in the human ATC cell line. MATERIALS AND METHODS: Cultured ATC cells were treated at melatonin concentrations 0.6, 1, 4, 16, 28 mM for 24 h. The MTT assay was performed to examine cell viability. Cytotoxicity was assayed with the determination of lactic dehydrogenase (LDH) activity. Apoptosis was detected by acridine orange/ethidium bromide and Hoechst 33342 staining. Giemsa staining is considered for evaluating the morphological changes of ATC cells. The reproductive ability of cells to form a colony was evaluated by the clonogenic assay. RESULTS: Results showed that melatonin could significantly decrease cell viability and the lowest cell viability was observed at 28 mM, 10.26 % ± 0.858 versus control. Similar results were obtained when analyzing LDH activity. The highest LDH levels were observed at 16 and 28 mM (546.08 ± 4.66, 577.82 ± 3.14 munit/mL versus control) that confirmed the occurrence of late apoptosis. The clonogenic assay showed that cells at the high concentration of melatonin (16 and 28 mM) don't enable to form the colony that approved the occurrence of reproductive death. CONCLUSION: Our results showed a dose-dependent cytotoxic effect of melatonin on ATC cells that significantly decreased cell viability and induced cell reproductive death at the concentration greater than 1 mM and findings suggested that MLT might be useful as an adjuvant in ATC therapy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Melatonina/farmacologia , Carcinoma Anaplásico da Tireoide/patologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia
15.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008586

RESUMO

Ischemic stroke is characterized by an occlusion of a cerebral blood vessel resulting in neuronal cell death due to nutritional and oxygen deficiency. Additionally, post-ischemic cell death is augmented after reperfusion. These events are paralleled by dysregulated miRNA expression profiles in the peri-infarct area. Understanding the underlying molecular mechanism in the peri-infarct region is crucial for developing promising therapeutics. Utilizing a tMCAo (transient Middle Cerebral Artery occlusion) model in rats, we studied the expression levels of the miRNAs (miR) 223-3p, 155-5p, 3473, and 448-5p in the cortex, amygdala, thalamus, and hippocampus of both the ipsi- and contralateral hemispheres. Additionally, the levels in the blood serum, spleen, and liver and the expression of their target genes, namely, Nlrp3, Socs1, Socs3, and Vegfa, were assessed. We observed an increase in all miRNAs on the ipsilateral side of the cerebral cortex in a time-dependent manner and increased miRNAs levels (miR-223-3p, miR-3473, and miR-448-5p) in the contralateral hemisphere after 72 h. Besides the cerebral cortex, the amygdala presented increased expression levels, whereas the thalamus and hippocampus showed no alterations. Different levels of the investigated miRNAs were detected in blood serum, liver, and spleen. The gene targets were altered not only in the peri-infarct area of the cortex but selectively increased in the investigated non-affected brain regions along with the spleen and liver during the reperfusion time up to 72 h. Our results suggest a supra-regional influence of miRNAs following ischemic stroke, which should be studied to further identify whether miRNAs are transported or locally upregulated.


Assuntos
Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Ataque Isquêmico Transitório/metabolismo , Fígado/metabolismo , MicroRNAs/metabolismo , Soro/metabolismo , Baço/metabolismo , Animais , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/metabolismo
16.
J Mol Neurosci ; 71(5): 933-942, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32959226

RESUMO

The central nervous system (CNS) responds to diverse neurologic injuries with a vigorous activation of astrocytes. In addition to their role in the maintenance of CNS homeostasis and neuronal function, astrocytes are thought to participate in the regulation of innate and adaptive immune responses in the CNS. Following antigen recognition, reactive astrocytes may participate in the initiation of innate immune responses, and modulate adaptive immune response leading to the recruitment of peripheral immune cells. Among activation, astrocytes undergo morphological changes and express several molecules, e.g., chemokines. Lipocalin 2 (LCN2) is involved in the control of innate immune responses, regulation of excess iron, and reactive oxygen production. Here, we investigated the influence of LCN2 on basic astrocytic functions linked to inflammatory responses. In vitro studies revealed a similar chemokine expression pattern in wild-type and Lcn2-deficient astrocyte cultures after treatment with lipopolysaccharides (LPS). Increased wound closure and morphological changes upon LPS treatment are independent of Lcn2 expression. We conclude that LCN2 is not necessary for basic astrocytic functions in the context of inflammation. However, CNS-derived LCN2 might have a regulatory effect on other cells, e.g., endothelial cells of the blood-brain barrier.


Assuntos
Astrócitos/metabolismo , Lipocalina-2/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Encéfalo/citologia , Movimento Celular , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Lipocalina-2/genética , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL
17.
Neural Regen Res ; 16(6): 1086-1092, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33269754

RESUMO

Studies have shown that acellular nerve xenografts do not require immunosuppression and use of acellular nerve xenografts for repair of peripheral nerve injury is safe and effective. However, there is currently no widely accepted standard chemical decellularization method. The purpose of this study is to investigate the efficiency of bovine-derived nerves decellularized by the modified Hudson's protocol in the repair of rat sciatic nerve injury. In the modified Hudson's protocol, Triton X-200 was replaced by Triton X-100, and DNase and RNase were used to prepare accelular nerve xenografts. The efficiency of bovine-derived nerves decellularized by the modified Hudson's protocol was tested in vitro by hematoxylin & eosin, Alcian blue, Masson's trichrome, and Luxol fast blue staining, immunohistochemistry, and biochemical assays. The decellularization approach excluded cells, myelin, and axons of nerve xenografts, without affecting the organization of nerve xenografts. The decellularized nerve xenograft was used to bridge a 7 mm-long sciatic nerve defect to evaluate its efficiency in the repair of peripheral nerve injury. At 8 weeks after transplantation, sciatic function index in rats subjected to transplantation of acellular nerve xenograft was similar to that in rats undergoing transplantation of nerve allograft. Morphological analysis revealed that there were a large amount of regenerated myelinated axons in acellular nerve xenograft; the number of Schwann cells in the acellular nerve xenograft was similar to that in the nerve allograft. These findings suggest that acellular nerve xenografts prepared by the modified Hudson's protocol can be used for repair of peripheral nerve injury. This study was approved by the Research Ethics Committee, Research and Technology Chancellor of Guilan University of Medical Sciences, Iran (approval No. IR.GUMS.REC.1395.332) on February 11, 2017.

18.
Int J Mol Sci ; 21(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645874

RESUMO

Acute ischemic stroke (AIS) is a devastating neurological condition with a lack of neuroprotective therapeutic options, despite the reperfusion modalities thrombolysis and thrombectomy. Post-ischemic brain damage is aggravated by an excessive inflammatory cascade involving the activation and regulation of the pro-inflammatory cytokines IL-1ß and IL-18 by inflammasomes. However, the role of AIM2 and NLRC4 inflammasomes and the influence of the neuroprotective steroids 17ß-estradiol (E2) and progesterone (P) on their regulation after ischemic stroke have not yet been conclusively elucidated. To address the latter, we subjected a total of 65 rats to 1 h of transient Middle Cerebral Artery occlusion (tMCAO) followed by a reperfusion period of 72 h. Moreover, we evaluated the expression and regulation of AIM2 and NLRC4 in glial single-cell cultures (astroglia and microglia) after oxygen-glucose deprivation (OGD). The administration of E2 and P decreased both infarct sizes and neurological impairments after cerebral ischemia in rats. We detected a time-dependent elevation of gene and protein levels (Western Blot/immunohistochemistry) of the AIM2 and NLRC4 inflammasomes in the post-ischemic brains. E2 or P selectively mitigated the stroke-induced increase of AIM2 and NLRC4. While both inflammasomes seemed to be exclusively abundant in neurons under physiological and ischemic conditions in vivo, single-cell cultures of cortical astrocytes and microglia equally expressed both inflammasomes. In line with the in vivo data, E and P selectively reduced AIM2 and NLRC4 in primary cortical astrocytes and microglial cells after OGD. In conclusion, the post-ischemic elevation of AIM2 and NLRC4 and their down-regulation by E2 and P may shed more light on the anti-inflammatory effects of both gonadal hormones after stroke.


Assuntos
Isquemia Encefálica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estradiol/metabolismo , Hormônios Gonadais/metabolismo , Inflamassomos/metabolismo , Receptores de Superfície Celular/metabolismo , Regulação para Cima/fisiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Microglia/metabolismo , Neurônios/metabolismo , Ratos , Ratos Wistar , Reperfusão/métodos , Acidente Vascular Cerebral/metabolismo
19.
Endocr Regul ; 54(2): 96-108, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32597153

RESUMO

OBJECTIVE: The exact mechanism, by which spinal cord injury (SCI) leads to a male subfertility is not well-known. Present study was conducted to determine the mechanisms that lead to the elevated end-product cytokines and inflammasomes in the testes of an SCI rat model. Moreover, we evaluated the inflammasome components following SCI in testis over a defined time periods. METHODS: Weight drop technique was used to induce SCI at the level of the T10 vertebra in male Wistar rats. The animals were sacrificed at specific time intervals (3, 7, 14, 21, and 28 day's post-SCI). mRNA levels of inflammasomes and cytokines were measured by real-time PCR, germ cells apoptosis was evaluated by TUNEL staining, and the epithelium of seminiferous tubules by Miller's and Johnsen's scores. RESULTS: The results showed activation of Nlrp3 in the testes of SCI animals at different time points. Expression of Nlrp3 and IL-1ß sharply increased 14 days after the SCI. Upregulation of IL-1ß and IL-18 at days 14 and 21 post-SCI might disintegrate the epithelium of seminiferous tubules at day 14 and induce germ cells apoptosis, increase abnormal sperm cells, and attenuate motility and viability at 21 days post-SCI. CONCLUSION: This study provided further evidence of innate immunity activation in testes that could lead to more disruption of spermatogenesis in SCI patients at specific times.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Citocinas , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espermatogênese/imunologia , Espermatozoides , Traumatismos da Medula Espinal , Testículo , Animais , Apoptose/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Masculino , RNA Mensageiro , Ratos , Ratos Wistar , Espermatozoides/imunologia , Espermatozoides/metabolismo , Espermatozoides/patologia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/metabolismo , Testículo/imunologia , Testículo/metabolismo , Regulação para Cima
20.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331279

RESUMO

The effects of mechanical stress on cells and their extracellular matrix, especially in gliding sections of tendon, are still poorly understood. This study sought to compare the effects of uniaxial stretching on both gliding and traction areas in the same tendon. Flexor digitorum longus muscle tendons explanted from rats were subjected to stretching in a bioreactor for 6, 24, or 48 h, respectively, at 1 Hz and an amplitude of 2.5%. After stimulation, marker expression was quantified by histological and immunohistochemical staining in both gliding and traction areas. We observed a heightened intensity of scleraxis after 6 and 24 h of stimulation in both tendon types, though it had declined again 48 h after stimulation. We observed induced matrix metalloproteinase-1 and -13 protein expression in both tendon types. The bioreactor produced an increase in the mechanical structural strength of the tendon during the first half of the loading time and a decrease during the latter half. Uniaxial stretching of flexor tendon in our set-up can serve as an overloading model. A combination of mechanical and histological data allows us to improve the conditions for cultivating tendon tissues.


Assuntos
Estresse Mecânico , Tendões/fisiologia , Animais , Biomarcadores , Fenômenos Biomecânicos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Histocitoquímica , Humanos , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Modelos Animais , Ratos , Traumatismos dos Tendões/etiologia , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/patologia , Tendões/citologia , Técnicas de Cultura de Tecidos , Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...