Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
J Integr Plant Biol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751028

RESUMO

Tapetum, the innermost layer of the anther wall, provides essential nutrients and materials for pollen development. Timely degradation of anther tapetal cells is a prerequisite for normal pollen development in flowering plants. Tapetal cells facilitate male gametogenesis by providing cellular contents after highly coordinated programmed cell death (PCD). Tapetal development is regulated by a transcriptional network. However, the signaling pathway(s) involved in this process are poorly understood. In this study, we report that a mitogen-activated protein kinase (MAPK) cascade composed of OsYDA1/OsYDA2-OsMKK4-OsMPK6 plays an important role in tapetal development and male gametophyte fertility. Loss of function of this MAPK cascade leads to anther indehiscence, enlarged tapetum, and aborted pollen grains. Tapetal cells in osmkk4 and osmpk6 mutants exhibit an increased presence of lipid body-like structures within the cytoplasm, which is accompanied by a delayed occurrence of PCD. Expression of a constitutively active version of OsMPK6 (CA-OsMPK6) can rescue the pollen defects in osmkk4 mutants, confirming that OsMPK6 functions downstream of OsMKK4 in this pathway. Genetic crosses also demonstrated that the MAPK cascade sporophyticly regulates pollen development. Our study reveals a novel function of rice MAPK cascade in plant male reproductive biology.

2.
Curr Med Imaging ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38639286

RESUMO

OBJECTIVE: This study aimed to compare the parametric value of T2 with and without fat suppression (FS) on T2 mapping for the evaluation of extraocular muscles (EOMs) in mild thyroid-associated ophthalmopathy (TAO). METHODS: We prospectively recruited 44 consecutive patients with mild TAO seen between May 2020 and October 2022 and 26 healthy controls with no history of eye- or thyroid-related or other autoimmune diseases. Patients with mild TAO were subdivided into active and inactive groups based on their clinical activity scores. The T2 of each EOM was measured over a large and small area of interest on T2-mapping images with and without FS. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic efficacy of T2 for detecting TAO activity. RESULTS: The T2 was significantly and heterogeneously higher in the active group than in the inactive and control groups (P < 0.05). FS-T2-mapping images had better signal display within and at the edges of the EOMs than those without FS. It was possible to observe high-signal aggregation visible in the periphery of some EOMs, and the central part showed relatively low signals. The maximum T2 measured in small or large areas with and without FS had good diagnostic efficacy for TAO activity, with that of no-FS being better (the area under the ROC curve of the maximum T2 measured in a small area and a large area without FS was 1.0 and 1.0 and P values of < 0.001 and < 0.001, respectively). CONCLUSION: Maximal T2 with or without FS can facilitate the early clinical detection of mild TAO activity. The maximum T2 in a small area can facilitate active staging of patients with mild TAO.

5.
J Med Food ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38526570

RESUMO

Inflammatory bowel disease, a disease featured by intestinal epithelial barrier destruction and dysfunction, has been a constant threat to animal health. The primary objective of this research was to assess the impact of the extract derived from lotus leaves (LLE) on lipopolysaccharide (LPS) induced damage to the intestines in mice, as well as to investigate the fundamental mechanism involved. The LLE was prepared using ultrasonic extraction in this experiment, and the LLE total flavonoid content was 117.02 ± 10.73 mg/g. The LLE had strong antioxidant activity in vitro, as assessed by 2, 2-diphenyl-1-picrylhydrazyl, ferric reducing antioxidant power, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) methods. In the vivo experiment, different doses of LLE (50, 100, and 200 mg/kg) were administered for 2 weeks before LPS treatment in mice. The results revealed that LLE alleviates intestinal tissue damage in LPS-induced mice. In the jejunum tissue, LLE significantly upregulated mRNA and protein expression levels of tight junction proteins, such as ZO-1, occludin, and claudin-1, and decreased the contents of the inflammatory cytokines, interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α. Furthermore, the malondialdehyde and lactate dehydrogenase contents increased by LPS in the liver were significantly reduced after administration of LLE, and the total antioxidant capacity, superoxide dismutase, and reduced glutathione decreased by LPS were remarkably increased by LLE. It was found that LLE could relieve LPS-induced oxidative stress by upregulating mRNA and protein expression of Nrf2 and HO-1 in jejunum tissue. In conclusion, LLE alleviates LPS-induced intestinal damage through regulation of the Nrf2/HO-1 signal pathway to alleviate oxidative stress, reducing inflammatory factors and increasing the expression of tight junction proteins in mice.

6.
Front Immunol ; 15: 1354040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529273

RESUMO

Introduction: Taraxacum mongolicum (TM) is a kind of medicinal and edible homologous plant which is included in the catalogue of feed raw materials in China. It is rich in polyphenols, flavonoids, polysaccharides and other active substances, and shows many benefits to livestock, poultry and aquatic products. The study aimed to assess the potential of TM aqueous extract (TMAE) as a substitute for poultry AGPs. Methods: A total of 240 one-day-old Arbor Acker broilers were randomly assigned to four groups and fed a basal diet (Con) supplemented with 500, 1000, and 2000 mg/kg TMAE (Low, Medium, and High groups). The growth performance of the broilers was measured on day 21 and day 42. At the end of the trial, the researchers measured slaughter performance and collected serum, liver, spleen, ileum, and intestinal contents to investigate the effects of TMAE on serum biochemistry, antioxidant capacity, immune function, organ coefficient, intestinal morphology, flora composition, and short-chain fatty acids (SCFAs). Results: The results showed that broilers treated with TMAE had a significantly higher average daily gain from 22 to 42 days old compared to the Con group. Various doses of TMAE resulted in different levels of improvement in serum chemistry. High doses increased serum alkaline phosphatase and decreased creatinine. TMAE also increased the antioxidant capacity of serum, liver, and ileum in broilers. Additionally, middle and high doses of TMAE enhanced the innate immune function of the liver (IL-10) and ileum (Occludin) in broilers. Compared to the control group, the TMAE treatment group exhibited an increase in the ratio of villi length to villi crypt in the duodenum. TMAE increased the abundance of beneficial bacteria, such as Alistipes and Lactobacillus, while reducing the accumulation of harmful bacteria, such as Colidextracter and Sellimonas. The cecum's SCFAs content increased with a medium dose of TMAE. Supplementing broiler diets with TMAE at varying doses enhanced growth performance and overall health. The most significant benefits were observed at a dose of 1000 mg/kg, including improved serum biochemical parameters, intestinal morphology, antioxidant capacity of the liver and ileum, immune function of the liver and ileum, and increased SCFAs content. Lactobacillus aviarius, norank_f_norank_o__Clostridia_UCG-014, and Flavonifractor are potentially dominant members of the intestinal microflora. Conclusion: In conclusion, TMAE is a promising poultry feed additive and 1000 mg/kg is an effective reference dose.


Assuntos
Antioxidantes , Taraxacum , Animais , Antioxidantes/farmacologia , Galinhas/microbiologia , Suplementos Nutricionais , Ácidos Graxos Voláteis , Aves Domésticas
7.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338707

RESUMO

Acute colitis is a complex disease that can lead to dysregulation of the gut flora, inducing more complex parenteral diseases. Dandelion polysaccharides (DPSs) may have potential preventive and therapeutic effects on enteritis. In this study, LPS was used to induce enteritis and VC was used as a positive drug control to explore the preventive and therapeutic effects of DPS on enteritis. The results showed that DPS could repair the intestinal barrier, down-regulate the expression of TNF-α, IL-6, IL-1ß, and other pro-inflammatory factors, up-regulate the expression of IL-22 anti-inflammatory factor, improve the antioxidant capacity of the body, and improve the structure of intestinal flora. It is proved that DPS can effectively prevent and treat LPS-induced acute enteritis and play a positive role in promoting intestinal health.


Assuntos
Enterite , Microbioma Gastrointestinal , Taraxacum , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Lipopolissacarídeos , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Inflamação
8.
Sci Total Environ ; 913: 169767, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176562

RESUMO

Inadequately managed solid organic waste generation poses a threat to the environment and human health globally. Biotransformation with the black soldier fly larvae (BSFL) is emerging as talent technology for solid waste management. However, there is a lack of understanding of whether BSFL can effectively suppress potential pathogenic microorganisms during management and the underlying mechanisms. In this study, we investigated the temporal variations of microorganisms in two common types of solid waste, i.e., kitchen waste (KW) and pig manure (PM). Natural composting and composting with BSFL under three different pH levels (pH 5, 7, and 9) were established to explore their impact on microbial communities in compost and the gut of BSFL. The results showed that the compost of kitchen waste and pig manure led to an increase in relative abundance of various potentially pathogenic bacteria. Temporal gradient analyses revealed that the most substantial reduction in the relative abundance and diversity of potentially pathogenic microorganisms occurred when the initial pH of both two wastes were adjusted to 7 upon the introduction of BSFL. Through network and pls-pm analysis, it was discovered that the gut microbiota of BSFL occupied an ecological niche in the compost, inhibiting the proliferation of potentially pathogenic microorganisms. This study has revealed the potential of BSFL in reducing public health risks during the solid waste management process, providing robust support for sustainable waste management.


Assuntos
Compostagem , Dípteros , Humanos , Animais , Suínos , Larva/fisiologia , Resíduos Sólidos , Esterco , Dípteros/fisiologia
9.
Poult Sci ; 103(2): 103288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064885

RESUMO

This paper aimed to evaluate the effect of 3 kinds of TCM polysaccharides instead of antibiotics in preventing salpingitis in laying hens. After feeding the laying hens with Lotus leaf polysaccharide, Poria polysaccharide, and Epimedium polysaccharide, mixed bacteria (E. coli and Staphylococcus aureus) were used to infect the oviduct to establish an inflammation model. Changes in antioxidant, serum immunity, anti-inflammatory, gut microbiota, and serum metabolites were evaluated. The results showed that the 3 TCM polysaccharides could increase the expression of antioxidant markers SOD, GSH, and CAT, and reduce the accumulation of MDA in the liver; the contents of IgA and IgM in serum were increased. Decreased the mRNA expression of TLR4, NFκB, TNF-α, IFN-γ, IL1ß, IL6, and IL8, and increased the mRNA expression of anti-inflammatory factor IL5 in oviduct tissue. 16sRNA high-throughput sequencing revealed that the 3 TCM polysaccharides improved the intestinal flora disturbance caused by bacterial infection, increased the abundance of beneficial bacteria such as Bacteroides and Actinobacillus, and decreased the abundance of harmful bacteria such as Romboutsia, Turicibacter, and Streptococcus. Metabolomics showed that the 3 TCM polysaccharides could increase the content of metabolites such as 3-hydroxybutyric acid and isobutyl-L-carnitine, and these results could alleviate the further development of salpingitis. In conclusion, the present study has found that using TCM polysaccharides instead of antibiotics was a feasible way to prevent bacterial salpingitis in laying hens, which might make preventing this disease no longer an issue for breeding laying hens.


Assuntos
Microbioma Gastrointestinal , Salpingite , Animais , Feminino , Antioxidantes/metabolismo , Salpingite/veterinária , Escherichia coli/metabolismo , Galinhas/metabolismo , Melhoramento Vegetal , Polissacarídeos/farmacologia , Bactérias/metabolismo , Metaboloma , Anti-Inflamatórios/farmacologia , RNA Mensageiro/metabolismo , Antibacterianos/farmacologia
10.
Plant Physiol Biochem ; 206: 108287, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150842

RESUMO

Lilium is a commercially important genus of bulbous flowers, investigating the flowering molecular mechanisms is important for flowering regulation of lily. MADS-box SHORT VEGETATIVE PHASE (SVP) orthologs are involved in the flowering transition and floral organ differentiation in many plants. In this study, we identified an SVP ortholog from L. × formolongi (LfSVP), which was closely related to Arabidopsis SVP according to phylogenetic analysis. Tissue-specific expression patterns indicated that LfSVP expression levels peaked in the leaves and showed low expression levels in flowering tepals. Stage-dependent expression patterns of LfSVP showed high transcription level in the flowering induction stage under different photoperiods and exhibited transcription peak in the floral budding development stage under long days. Overexpressed LfSVP led to delayed flowering and floral organ defects in Arabidopsis independent of photoperiod. Tobacco rattle virus -induced gene silencing of LfSVP caused a strongly earlier flowering time and floral organ defects of L. × formolongi. Moreover, LfSVP can interact with L. × formolongi APETALA1 (AP1) in both yeast and tobacco cells, and the two may interact to regulate floral organ differentiation. In conclusion, LfSVP is a flowering repressor and may be involved in the regulation of floral organ differentiation. This study will be helpful for the molecular breeding of short-life-period and rich floral patterns lily varieties.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lilium , Arabidopsis/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Lilium/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
11.
Molecules ; 28(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005364

RESUMO

Sanguinarine (SAN), as the main active component of a traditional Chinese veterinary medicine, has been widely used in the animal husbandry and breeding industry. However, the metabolites of SA are still uncertain. Therefore, this research aimed to investigate the metabolites of SA based on rats in vivo. The blood, feces, and urine of rats were collected after the oral administration of 40 mg/kg SAN. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) was employed to identify the metabolites of SAN. The elemental composition of sanguinarine metabolites was inferred by analyzing their exact molecular weight, and the structures of the metabolites were predicted based on their fragment ions and cleavage pathways. A total of 12 metabolites were identified, including three metabolites in the plasma, four in the urine, and nine in the feces. According to the possible metabolic pathways deduced in this study, SAN was mainly metabolized through reduction, oxidation, demethylation, hydroxylation, and glucuronidation. This present research has summarized the metabolism of SAN in rats, which is helpful for further studying the metabolic mechanism of SAN in vivo and in vitro.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Ratos Sprague-Dawley , Cromatografia Líquida de Alta Pressão/métodos , Plasma/química , Medicamentos de Ervas Chinesas/química , Administração Oral
12.
Comput Struct Biotechnol J ; 21: 5273-5284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954150

RESUMO

Coronarin (COR), an analog of jasmonic acid, has been shown to enhance the tolerance of plants to drought. However, the effects of COR on the interactions among microorganisms associated with plant roots and their implications for enhancing the drought tolerance of plants remain unclear. Here, we studied the effects of applying COR on the microorganisms associated with plant roots and the rhizosphere metabolome. Treatment with COR affected the fungal community of the rhizosphere by inducing changes in the rhizosphere metabolome, which enhanced the drought tolerance of plants. However, treatment with COR had no significant effect on root microorganisms or rhizosphere bacteria. Specifically, the application of COR resulted in a significant reduction in the relative abundance of metabolites, such as mucic acid, 1,4-cyclohexanedione, 4-acetylbutyric acid, Ribonic acid, palmitic acid, and stearic acid, in maize roots under drought conditions; COR application also led to increases in the abundance of drought-resistant fungal microorganisms, including Rhizopus, and the assembly of a highly drought-resistant rhizosphere fungal network, which enhanced the drought tolerance of plants. Overall, the results of our study indicate that COR application positively regulates interactions between plants and microbes and increases the drought tolerance of plants.

13.
Molecules ; 28(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836654

RESUMO

Intestinal inflammation is a chronic gastrointestinal disorder with uncertain pathophysiology and causation that has significantly impacted both the physical and mental health of both people and animals. An increasing body of research has demonstrated the critical role of cellular signaling pathways in initiating and managing intestinal inflammation. This review focuses on the interactions of three cellular signaling pathways (TLR4/NF-κB, PI3K-AKT, MAPKs) with immunity and gut microbiota to explain the possible pathogenesis of intestinal inflammation. Traditional medicinal drugs frequently have drawbacks and negative side effects. This paper also summarizes the pharmacological mechanism and application of Chinese herbal compounds (Berberine, Sanguinarine, Astragalus polysaccharide, Curcumin, and Cannabinoids) and formulae (Wumei Wan, Gegen-Qinlian decoction, Banxia xiexin decoction) against intestinal inflammation. We show that the herbal compounds and formulae may influence the interactions among cell signaling pathways, immune function, and gut microbiota in humans and animals, exerting their immunomodulatory capacity and anti-inflammatory and antimicrobial effects. This demonstrates their strong potential to improve gut inflammation. We aim to promote herbal medicine and apply it to multispecies animals to achieve better health.


Assuntos
Medicamentos de Ervas Chinesas , Fosfatidilinositol 3-Quinases , Animais , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Inflamação/tratamento farmacológico , Anti-Inflamatórios , NF-kappa B
14.
J Org Chem ; 88(16): 11924-11934, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37560787

RESUMO

A new method for the synthesis of α-amino phenylpropanoids under blue light-emitting diode irradiation has been developed through α-C-H benzylation of readily available N-phenyl glycine ester with benzyl oxalates as a coupling partner under mild conditions. A range of N-phenyl glycine esters were successfully converted to α-amino phenylpropanoid products in moderate to good yields. The utility of this methodology is underlined by its application to the late-state modification of natural products.

15.
Poult Sci ; 102(10): 102865, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499615

RESUMO

This study aimed to determine whether the lotus leaf extract (LLE) had the effect of treating salpingitis in laying hens. First, the salpingitis model was established by the method of bacterial infection. Differential genes between salpingitis and healthy laying hens were identified by transcriptome sequencing, and GO and KEGG enrichment analyses were performed. Groups of treatment of antibiotics and LLE were established to verify the feasibility of the lotus leaf extract in treating salpingitis. Furthermore, the active component and pharmacological effects of LLE were identified using the UPLC-Q-TOF-MS and network pharmacology technique. At last, the mechanism of LLE treating salpingitis was further evaluated by DF-1 cells infected with bacteria. The results showed that LLE significantly reduced the levels of TLR4 and IFN-γ (P < 0.05), accelerated the levels of IgA and IgG (P < 0.05), regulated the levels of SOD and MDA (P < 0.05) in laying hens with salpingitis. A total of 1,874 differential genes were obtained according to the transcriptome sequencing. It was revealed a significant role in cell cycle and apoptosis by enrichment analysis. In addition, among the 28 components identified by UPLC-Q-TOF-MS, 20 components acted on 58 genes, including CDK1, BIRC5, and CA2 for treating salpingitis. After bacterial infection, cells were damaged and unable to complete the normal progression of the cell cycle, leading to cell cycle arrest and further apoptosis formation. However, with the intervention of LLE, bacterial infection was resisted. The cells proliferation was extensively restored, and the expression of NO was increased. The addition of LLE significantly decreased cell apoptosis. The G1 phase increased, the S phase and the G2 phase decreased in the model group; after the intervention of LLE, the G1 phase gradually returned to the average level, and G2 and S phases increased. The mRNA expression levels of BIRC5, CDK1, and CA2 were consistent with the predicted results in network pharmacology. At the same time, the mRNA expression levels of Caspase-3 and Caspase-7 were reduced after added with LLE. The mRNA expression levels of TNF-α, TRADD, FADD, Caspase-8, Caspase-10, and Caspase-9 (P < 0.05), which would inhibit death receptor activation and decrease the apoptotic cascade, were upregulated after bacterial infection. However, the results in LLE groups were downregulated (P < 0.05). Meanwhile, the mRNA expression levels of BCL-2 in LLE groups were increased significantly compared with it in model group (P < 0.05). Notably, LLE administration inhibited apoptosis and regulated the cell cycle distribution in the salpingitis induced by bacterial infection. These results indicated that the LLE attenuated bacterial-induced salpingitis by modulating apoptosis and immune function in laying hens.


Assuntos
Salpingite , Animais , Feminino , Salpingite/veterinária , Galinhas , Apoptose , RNA Mensageiro , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
16.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446938

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD), and its pathogenesis is related to intestinal mucosal barrier damage and gut microbiota imbalance. Protopine (PRO), an isoquinoline alkaloid, is one of the main anti-inflammatory ingredients of traditional Chinese medicine Macleaya cordata(Willd.) R. Br. This study investigated the effects of PRO on the intestinal mucosal barrier and gut microbiota in dextran sodium sulfate (DSS)-induced colitis mice. C57BL/6J mice were treated with 3% DSS in drinking water to induce acute colitis, while PRO was administered orally once daily for 7 days. The results showed that PRO administration significantly alleviated the symptoms of DSS-induced colitis in mice and inhibited the expression of inflammation-related genes. In addition, PRO restored the integrity of the intestinal barrier in colitis mice by restoring colonic mucin secretion and promoting the expression of tight junction proteins. Furthermore, PRO alleviated the DSS-induced gut microbiota dysbiosis by decreasing the abundance of Proteobacteria, Escherichia-Shigella and Enterococcus, as well as enhancing the abundance of beneficial bacteria, such as Firmicutes and Akkermansia. These findings suggested that PRO effectively alleviated DSS-induced ulcerative colitis by suppressing the expression of inflammation-related genes, maintaining the intestinal mucosal barrier and regulating the intestinal microbiota.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Animais , Camundongos , Camundongos Endogâmicos C57BL , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Dextranos , Inflamação , Colo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças
17.
Plant Dis ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415353

RESUMO

Macleaya cordata is a perennial herb that belongs to the Papaveraceae and is typically prescribed as a traditional antibacterial medicine in China (Kosina et al. 2010). The extract from M. cordata has been widely used in the manufacturing of natural growth promoters as an alternative to antibiotic growth promoters in the livestock industry (Liu et al. 2017), and the products are marketed in 70 countries such as Germany, China, etc (Ikezawa et al. 2009). During the summer of 2019, symptoms of leaf spot were observed on M. cordata (cv. HNXN-001) in two commercial fields (approximately 1, 300 m2 and 2, 100 m2) of Xinning county, Shaoyang City, Hunan Province, China, where approximately 2 to 3% of the plants were affected. The initial symptoms were irregular black and brown spots on the leaves. The lesions expanded and coalesced, eventually leading to leaf blight. Six symptomatic basal leaf sections from six plants from two fields were surface disinfested in 0.5% NaClO for 1 min, then 75% ethanol for 20 s, rinsed in sterile water three times, air dried, and placed onto potato dextrose agar (PDA), one dish for samples from a single leaf. Plates were incubated at 26°C in darkness. Nine strains with similar morphological characters were isolated, and one representative isolate ( BLH-YB-08) was used for morphological and molecular characterization. The colonies on PDA were grayish-green with white round margins. Conidia were typically obclavate to obpyriform, brown to dark brown, and 12.0 to 35.0 × 6.0 to 15.0 µm, and with 1 to 5 transverse septa and 0 to 2 longitudinal septa (n=50). Isolates were identified as Alternaria sp. on the basis of mycelial characteristics, color, and conidial morphology. To confirm identity of the pathogen, DNA was extracted from isolate BLH-YB-08 with the DNAsecure Plant Kit (TIANGEN, Biotech, China). The glyceraldehyde-3-phosphate dehydrogenase (GAPDH), RNA polymerase II second largest subunit (RPB2), actin (ACT), 28S nrDNA (LSU), 18S nuclear ribosomal DNA (SSU), histone 3 (HIS3), internal transcribed spacer (ITS) region of ribosomal DNA, and translation elongation factor 1-α (TEF) genes ( Berbee et al. 1999; Carbone and Kohn. 1999; Glass and Donaldson. 1995; White et al. 1990.) were amplified and sequenced. Sequences were deposited into the GenBank database. They were 100% sequence identity of GAPDH (OQ224996) with A. alternata strain AA2-8 (MH65578; 578/578bp), 100% sequence identity of RPB2 (OQ190460) with A. alternata strain SAX-WN-30-2 ( MK605877; 933/933bp), 100% sequence identity of ACT (OQ923292) with A. alternata strain FCBP0352 (OL830257; 939/939 bp), 100% sequence identity of LSU (OQ891167) with A. alternata XL14 (MG839509 ; 908/908 bp), 100% sequence identity of SSU (OQ139544) with A. alternata strain BJ19.4.1(OM736063; 1,067/1,067 bp), 100% sequence identity of HIS3 (MT454856) with A. alternata YJ-CYC-HC2 (OQ116440 ; 442/442 bp), 100% sequence identity of ITS (MT212225) with A. alternata CS-1-3 (OQ947366; 543/543bp), and 100% sequence identity of TEF (OQ190461) with A. alternata strain YZU 221185 (OQ512730; 252/252 bp). To test pathogenicity, the isolate BLH-YB-08 was cultured on PDA for 7 days to prepare conidial suspensions and the spore concentration adjusted to a final concentration of 1×106 spores/ml. The leaves of five potted 45-day-old M. cordata (cv. HNXN-001) plants were sprayed with conidial suspensions, and five control potted plants were wiped with 75% alcohol and washed five times with sterile distilled water. They were then sprayed with sterile distilled water. Plants were placed in a greenhouse at 25 to 30°C with 90% relative humidity. Pathogenicity tests were conducted twice. Fifteen days after inoculation, lesions were found on inoculated leaves, and the symptoms were the same as those in the field, whereas the controls were healthy. A fungus was consistently isolated from the inoculated leaves and identified as A. alternata by DNA sequencing of the GAPDH, ITS, and HIS3 genes, fulfilling Koch's postulates. To our knowledge, this is the first report of leaf spot on M. cordata caused by A. alternata in China. Understanding its etiology may help to control this fungal pathogen, thus reducing economic losses. Funding: Hunan Provincial Natural Science Foundation General Project (2023JJ30341) Hunan Provincial Natural Science Foundation Youth Fund (2023JJ40367) Seed Industry Innovation Project of Hunan Provincial Science and Technology Department Special project for the construction of Chinese herbal medicine industry technology system in Hunan Province "Xiangjiuwei" Industrial Cluster Project of the Ministry of Agriculture and Rural Affairs.

18.
Biomedicines ; 11(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36831001

RESUMO

Allocryptopine (ALL) is an isoquinoline alkaloid extracted from Macleaya cordata(Willd). R. Br., which has been claimed to have anti-inflammatory and neuroprotection properties. However, the mechanism by which ALL ameliorates inflammatory bowel disease (IBD) remains unclear. Here, we used network pharmacology and quantitative proteomic approaches to investigate the effect of ALL on IBD pathogenesis. Network pharmacology predicted potential targets and signaling pathways of ALL's anti-IBD effects. As predicted by network pharmacology, gene ontology (GO) analysis, in terms of the proteomic results, showed that the immune response in mucosa and antimicrobial humoral response were enriched. Further study revealed that the ALL-related pathways were the chemokine signaling pathway and apoptosis in the Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, we identified AKT1 as a hub for the critical pathways through protein-protein interaction (PPI) network analysis. Similar to mesalazine (MES), Western blot verified that ALL downregulated upstream chemokine CX3CL1 and GNB5 content to reduce phosphorylation of AKT and NF-κB, as well as the degree of apoptosis, to improve inflammatory response in the colon. Our research may shed light on the mechanism by which ALL inhibits the CX3CL1/GNB5/AKT2/NF-κB/apoptosis pathway and improves the intestinal barrier to reduce colitis response and act on the CX3CL1-CX3CR1 axis to achieve neuroprotection.

19.
Nat Prod Res ; 37(21): 3551-3555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35767365

RESUMO

Reduction of C = N double bond is the most important phase I metabolism process of quaternary benzophenanthridine alkaloids (QBAs). Inspired by the NADPH mediated reduction in QBAs, a visible-light promoted reductive aminomethylation of QBAs for synthesis of 6-substituted benzophenanthridines was reported using QBAs and N,N-dimethylaniline as coupling partners in this study. An α-amino radical that derived from QBAs was supposed to be the key intermediate in this visible-light promoted reductive aminomethylation reaction.

20.
Front Pharmacol ; 13: 960140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304153

RESUMO

In recent years, small intestine as a key target in the treatment of Inflammatory bowel disease caused by NSAIDs has become a hot topic. Sanguinarine (SA) is one of the main alkaloids in the Macleaya cordata extracts with strong pharmacological activity of anti-tumor, anti-inflammation and anti-oxidant. SA is reported to inhibit acetic acid-induced colitis, but it is unknown whether SA can relieve NSAIDs-induced small intestinal inflammation. Herein, we report that SA effectively reversed the inflammatory lesions induced by indomethacin (Indo) in rat small intestine and IEC-6 cells in culture. Our results showed that SA significantly relieved the symptoms and reversed the inflammatory lesions of Indo as shown in alleviation of inflammation and improvement of colon macroscopic damage index (CMDI) and tissue damage index (TDI) scores. SA decreased the levels of TNF-α, IL-6, IL-1ß, MDA and LDH in small intestinal tissues and IEC-6 cells, but increased SOD activity and ZO-1 expression. Mechanistically, SA dose-dependently promoted the expression of Nrf2 and HO-1 by decreasing Keap-1 level, but inhibited p65 phosphorylation and nuclear translocation in Indo-treated rat small intestine and IEC-6 cells. Furthermore, in SA treated cells, the colocalization between p-p65 and CBP in the nucleus was decreased, while the colocalization between Nrf2 and CBP was increased, leading to the movement of gene expression in the nucleus to the direction of anti-inflammation and anti-oxidation. Nrf2 silencing blocked the effects of SA. Together our results suggest that SA can significantly prevent intestinal inflammatory lesions induced by Indo in rats and IEC-6 cells through regulation of the Nrf2 pathway and NF-κBp65 pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...