Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(7): 3126-3139, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38344938

RESUMO

BACKGROUND: Spodoptera litura is one of the most harmful lepidoptera pests in China, and is difficult to control due to its strong resistance to the current frequently used insecticide species. The requirement to develop pesticides with novel toxicology mechanisms to control S. litura is urgent. The quassinoid of bruceine D display outstanding systemic properties and strong insecticidal activity against S. litura, which possess notable application potential for integrative management of S. litura, but the mechanism of toxicity remains unclear. RESULTS: In this study, we found that bruceine D exerts potent growth inhibitory activity against S. litura, disrupting the ecdysone and juvenile hormone titers, and causing long-term adverse effects. Association analysis between transcriptomics and metabolomics suggested that bruceine D affected the digestion and absorption capacity of S. litura larvae by inducing a strong oxidative stress response and cell apoptosis in the intestine. Further analysis demonstrated that bruceine D can inhibit the activities of digestive and antioxidant enzymes and induce malondialdehyde (MDA) and reactive oxygen species (ROS) overaccumulation in the midgut. Moreover, the protein level of Bax, cleavage caspase 3, and cytochrome c expressed in cytoplasm (cyto) were up-regulated by bruceine D, while Bcl-2 and cytochrome c expressed in mitochondria (mito) were down-regulated. In addition, there was a noticeable increase in caspase-3 protease activity. Histopathological observations revealed that bruceine D damages the structure of midgut epithelial cells and activates lysosomes, which subsequently disrupts the midgut tissue. CONCLUSION: Overall, our findings suggested that bruceine D induced excessive ROS accumulation in midgut epithelial cells. The resulting cell apoptosis disrupted midgut tissue, leading ultimately to reduced nutrient digestion and absorption in the midgut and the inhibition of larval growth. © 2024 Society of Chemical Industry.


Assuntos
Apoptose , Inseticidas , Larva , Spodoptera , Animais , Spodoptera/efeitos dos fármacos , Spodoptera/crescimento & desenvolvimento , Apoptose/efeitos dos fármacos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Quassinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
2.
Food Chem ; 443: 138616, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306907

RESUMO

Guangchenpi (GCP), which is the peel of Citrus reticulata 'Chachiensis', is widely used as an herbal medicine, tea and food ingredient in southeast Asia. Prolonging its aging process results in a more pleasant flavor and increases its profitability. Through the integration of sensory evaluation with flavoromic analysis approaches, we evaluated the correlation between the flavor attributes and the profiles of the volatiles and flavonoids of GCP with various aging years. Notably, d-limonene, γ-terpinene, dimethyl anthranilate and α-phellandrene were the characteristic aroma compounds of GCP. Besides, α-phellandrene and nonanal were decisive for consumers' perception of GCP aging time due to changes of their odor activity values (OAVs). The flavor attributes of GCP tea liquid enhanced with the extension of aging time, and limonene-1,2-diol was identified as an important flavor enhancer. Combined with machine learning models, key flavor-related metabolites could be developed as efficient biomarkers for aging years to prevent GCP adulteration.


Assuntos
Citrus , Monoterpenos Cicloexânicos , Limoneno , Chá
3.
J Agric Food Chem ; 72(1): 351-362, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38115585

RESUMO

Volatile terpenoids accumulate in citrus and play important roles in plant defense against various stressors. However, the broad-spectrum response of terpenoid biosynthesis to ubiquitous stressors in citrus has not been comparatively investigated. In this study, volatile terpenoids were profiled under six stressors: high temperature, citrus miner, citrus red mite, citrus canker, Alternaria brown spot, and huanglongbing (HLB). Significant content changes in 15 terpenoids, including ß-ocimene, were observed in more than four of the six stressors, implying their possibly universal stress-response effects. Notably, the emission of terpenoids, including ß-caryophyllene, ß-ocimene, and nerolidol glucoside, was significantly increased by HLB in HLB-tolerant "Shatian" pomelo leaves. The upregulation of CgTPS1 and CgTPS2 and their characterization in vivo identified them as mono- or sesquiterpenoid biosynthetic genes. This study provides a foundation for determining stress resistance mechanisms in citrus and biopesticide designations for future industrial applications.


Assuntos
Citrus , Citrus/genética , Terpenos , Monoterpenos Acíclicos , Perfilação da Expressão Gênica , Doenças das Plantas/prevenção & controle
4.
Molecules ; 28(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37513189

RESUMO

Portable and low-cost analytical devices are essential for rapid detection of bioactive substrates in agricultural products. This study presents the first highly integrated microelectrochemical sensor based on pencil graphite for rapid and sensitive detection of hesperidin in Citrus reticulate 'Chachi' peel. The surface morphology and characterization as well as the electrochemical property of pencil graphite was investigated and discussed. A high electrocatalytic efficiency of hesperidin has been found at used pencil graphite-based microelectrodes. Kinetic analysis was carried out to further understand the electrochemical process of hesperidin at a pencil graphite microelectrode. Consequently, a portable and highly-integrated microelectrochemical sensor exhibits a sensitivity of 0.7251 µA cm-2 µM-1 and a detection limit as low as 25 nM (S/N = 3), and high selectivity was fabricated. Proposed microelectrochemical sensors were applied to electrochemically determinate the hesperidin content in the extract of Citrus reticulata "chachi" peel. As a result, the concentration of hesperidin in the actual real sample detected electrochemically with the proposed portable and low-cost microelectrochemical sensors is highly consistent to that obtained with a common chromatographic method, thus indicating the good reliability and that it can be used in practical applications.


Assuntos
Citrus , Grafite , Hesperidina , Citrus/química , Reprodutibilidade dos Testes , Cinética
5.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511229

RESUMO

Huanglongbing (HLB), caused by the Candidatus Liberibacter spp., is the most devastating disease in the citrus industry. HLB significantly affects and alters the microbial community structure or potential function of the microbial community of leaves and roots. However, it is unknown how the microbial community structure of the pericarp with different pigments is affected by Candidatus Liberibacter asiaticus (CLas). This study identified the enriched taxa of the microbial community in the citrus pericarp with normal or abnormal pigment and determine the effects of HLB on the pericarp microbial community using 16S rRNA-seq. The alpha and beta diversity and composition of microbial communities were significantly different between normal and abnormal pigment pericarp tissues of ripe fruits infected by CLas. Firmicutes, Actinobacteriota, Bacteroidota, Acidobacteriota, and Desulfobacterota dominated the pericarp microbiota composition in WDYFs (whole dark yellow fruits) samples. The relative abundance of most genera in WDYFs was higher than 1%, such as Burkholderia, and Pelomonas. However, with the exception of the HLB pathogen, the relative abundance of most genera in the abnormal-colored pericarp samples was less than 1%. CLas decreased the relative abundance of pericarp taxonomic. The predicted function of microbial was more plentiful and functional properties in the WDYF sample, such as translation, ribosomal structure and biogenesis, amino acid transport and metabolism, energy production and conversion, and some other clusters of orthologous groups (COG) except for cell motility. The results of this study offer novel insights into understanding the composition of microbial communities of the CLas-affected citrus pericarps and contribute to the development of biological control strategies for citrus against Huanglongbing.


Assuntos
Citrus , Rhizobiaceae , Rhizobiaceae/genética , Liberibacter , Citrus/microbiologia , RNA Ribossômico 16S/genética , Doenças das Plantas/microbiologia
6.
Plant Physiol Biochem ; 196: 210-221, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36724705

RESUMO

As a well-recognized traditional Chinese medicine (TCM), immature fruits of Citrus grandis 'Tomentosa' (CGT) serve to cure chronic cough in humans. Specialized metabolites including flavonoids may have contribute to this curing effect. Knowledge about the molecular mechanisms underlying flavonoid biosynthesis in 'Tomentosa' fruits will, therefore, support the breeding of varieties with improved medicinal properties. Hence, we profiled the transcriptomes and metabolites of the fruits of two contrasting C. grandis varieties, namely 'Zheng-Mao' ('ZM') used in TCM production, and a locally cultivated pomelo, namely 'Guang-Qing' ('GQ'), at four developmental stages. A total of 39 flavonoids, including 14 flavanone/flavone, 5 isoflavonoids, 12 flavonols, and 6 anthocyanins, were identified, and 16 of which were quantitatively determined in the fruits of the two varieties. We found that 'ZM' fruits contain more flavonoids than 'GQ'. Specifically, rhoifolin levels were significantly higher in 'ZM' than in 'GQ'. We annotated 31,510 genes, including 1,387 previously unknown ones, via transcriptome sequencing of 'ZM' and 'GQ.' A total of 646 genes were found to be differentially expressed between 'ZM' and 'GQ' throughout at all four fruit developmental stages, indicating that they are robust expression markers for future breeding programs. Weighted gene co-expression network analysis identified 18 modules. Combined transcriptional and metabolic analysis revealed 25 genes related to flavonoid biosynthesis and 16 transcriptional regulators (MYBs, bHLHs, WD40) that may be involved in the flavonoids biosynthesis in C. grandis 'Tomentosa' fruits.


Assuntos
Citrus , Transcriptoma , Humanos , Transcriptoma/genética , Frutas/genética , Frutas/química , Citrus/genética , Antocianinas , Melhoramento Vegetal , Flavonoides/análise
7.
Ecotoxicol Environ Saf ; 246: 114153, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36252515

RESUMO

Citric acid content is a critical quality determinant in citrus (Citrus spp.) fruits. Although arsenic (As) can effectively reduce citric acid content to improve citrus fruit quality, it can have adverse environmental effects. The discovery of nontoxic substitutes is hampered by the incomplete elucidation of the underlying mechanisms of As action in citrus fruits. Metabolic, transcriptomic, and physiological analyses were employed to investigate As action on citric acid accumulation to discover the mechanisms of As action in citrus. The enzyme activity related to citrate biosynthesis was not inhibited and the content of the involved metabolites was not reduced in As-treated fruits. However, the proton pump genes CitPH5 and CitPH1 control the vacuolar citric acid accumulation and transcription factor genes CitTT8 and CitMYB5, which regulate CitPH5 and CitPH1, were downregulated. The oxidative stress-response genes were upregulated in As-treated fruits. The reactive oxygen species (ROS) treatment also downregulated CitTT8 and CitMYB5 in juice cells. The mitochondrial ROS production rate increased in As-treated fruits. AsIII was more potent in stimulating isolated mitochondria to overproduce ROS compared to AsV. Our results indicate that the As inhibition of citric acid accumulation may be primarily due to the transcriptional downregulation of CitPH5, CitPH1, CitTT8, and CitMYB5. As-induced oxidative stress signaling may operate upstream to downregulate these acid regulator genes. Mitochondrial thiol proteins may be the principal targets of As action in citrus fruits.


Assuntos
Arsênio , Citrus , Citrus/genética , Citrus/metabolismo , Ácido Cítrico/metabolismo , Bombas de Próton/genética , Bombas de Próton/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Frutas , Expressão Gênica , Regulação da Expressão Gênica de Plantas
8.
Molecules ; 27(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889470

RESUMO

Citrus grandis 'Tomentosa', commonly known as 'Huajuhong' pummelo (HJH), is used in traditional Chinese medicine and can moisten the lungs, resolve phlegm, and relieve coughs. A spontaneous bud mutant, named R-HJH, had a visually attractive phenotype with red albedo tissue and red juice sacs. In this study, the content and composition of carotenoids were investigated and compared between R-HJH and wild-type HJH using HPLC-MS analysis. The total carotenoids in the albedo tissue and juice sacs of R-HJH were 4.03- and 2.89-fold greater than those in HJH, respectively. The massive accumulation of carotenoids, including lycopene, ß-carotene and phytoene, led to the attractive red color of R-HJH. However, the contents of flavones, coumarins and most volatile components (mainly D-limonene and γ-terpinene) were clearly reduced in R-HJH compared with wild-type HJH. To identify the molecular basis of carotenoid accumulation in R-HJH, RNA-Seq transcriptome sequencing was performed. Among 3948 differentially expressed genes (DEGs), the increased upstream synthesis genes (phytoene synthase gene, PSY) and decreased downstream genes (ß-carotene hydroxylase gene, CHYB and carotenoid cleavage dioxygenase gene, CCD7) might be the key factors that account for the high level of carotenoids in R-HJH. These results will be beneficial for determining the molecular mechanism of carotenoid accumulation and metabolism in pummelo.


Assuntos
Citrus , Carotenoides/análise , Citrus/genética , Citrus/metabolismo , Frutas/química , Regulação da Expressão Gênica de Plantas , Licopeno/metabolismo , beta Caroteno/metabolismo
9.
RSC Adv ; 12(11): 6409-6415, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35424592

RESUMO

Electrocatalysis of bioflavonoids in carbon nanomaterials plays an important role in electrochemical sensors for the detection of their content in fruits. In this study, three types of carbon nanomaterials with 1D, 2D, and 3D structures, namely carbon nanotubes (CNTs), graphene oxide (GO), and Ketjen black (KB), were modified onto glassy carbon electrodes for the electrocatalysis of hesperidin and naringin, which are two important bioflavonoids in fruits. As a result, the CNT-modified electrodes showed the highest electrocatalytic activity for both hesperidin and naringin compared to GO and KB. The morphology and surface chemistry of the carbon nanomaterials were characterized. The structural defects and carbon status of carbon nanomaterials are proposed to be the most important factors affecting the electrocatalysis of hesperidin and naringin. Finally, a CNT-based electrochemical sensor was fabricated to simultaneously detect hesperidin and naringin. Real sample tests on the fruit extract of Citrus grandis "Tomentosa" show that the proposed electrochemical sensors with high recovery thus could be employed in practical applications.

10.
Int J Biol Macromol ; 198: 46-53, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34958815

RESUMO

Citron (Citrus. medica L.) fruits are commonly utilized in the production of essential oil, therefore, the fruits residues turn out to be industrial byproducts. In the present study, a crude polysaccharide was extracted from citron fruit residues by hot water extraction and precipitation of ethanol (95%), after deproteinization, a major polysaccharide component (CMLP-2) was obtained by gradient ethanol precipitation (20%-80%). The physicochemical properties of CMLP-2 such as surface morphology, functional groups, and thermostability were examined by FT-IR spectroscopy, SEM, and thermogravimetric analysis. Moreover, the chemical structure of CMLP-2 was elucidated that CMLP-2 is an acidic pectic polysaccharide consisting of arabinose (Ara), galacturonic acid (GalA), and rhamnose (Rha) in a molar ratio of 4:2:1 with a molecular weight of 202.18 kDa. CMLP-2 is a novel pectic polysaccharide rich in rhamnogalacturonan I (RG-I). Moreover, rheological tests revealed that CMLP-2 solution is pseudoplastic and temperature resistant. The result could be a good basis for the utilization of Citrus medica L. fruits residues as plant-derived food additive.


Assuntos
Etanol
12.
BMC Plant Biol ; 21(1): 397, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433413

RESUMO

BACKGROUND: Mandarin 'Shatangju' is susceptible to Huanglongbing (HLB) and the HLB-infected fruits are small, off-flavor, and stay-green at the maturity period. To understand the relationship between pericarp color and HLB pathogen and the effect mechanism of HLB on fruit pericarp coloration, quantitative analyses of HLB bacterial pathogens and carotenoids and also the integrative analysis of metabolome and transcriptome profiles were performed in the mandarin 'Shatangju' variety with four different color fruits, whole green fruits (WGF), top-yellow and base-green fruits (TYBGF), whole light-yellow fruits (WLYF), and whole dark-yellow fruits (WDYF) that were infected with HLB. RESULTS: the HLB bacterial population followed the order WGF > TYBGF > WLYF > WDYF. And there were significant differences between each group of samples. Regarding the accumulation of chlorophyll and carotenoid, the chlorophyll-a content in WGF was the highest and in WDYF was the lowest. The content of chlorophyll-b in WGF was significantly higher than that in other three pericarps. There were significant differences in the total content of carotenoid between each group. WGF and TYBGF pericarps were low in phytoene, γ-carotene, ß-cryptoxanthin and apocarotenal, while other kinds of carotenoids were significantly higher than those in WDYF. And WLYF was only short of apocarotenal. We comprehensively compared the transcriptome and metabolite profiles of abnormal (WGF, TYBGF and WLYF) and normal (WDYF, control) pericarps. In total, 2,880, 2,782 and 1,053 differentially expressed genes (DEGs), including 121, 117 and 43 transcription factors were identified in the three comparisons, respectively. The qRT-PCR confirmed the expression levels of genes selected from transcriptome. Additionally, a total of 77 flavonoids and other phenylpropanoid-derived metabolites were identified in the three comparisons. Most (76.65 %) showed markedly lower abundances in the three comparisons. The phenylpropanoid biosynthesis pathway was the major enrichment pathway in the integrative analysis of metabolome and transcriptome profiles. CONCLUSIONS: Synthesizing the above analytical results, this study indicated that different color pericarps were associated with the reduced levels of some carotenoids and phenylpropanoids derivatives products and the down-regulation of proteins in flavonoids, phenylpropanoids derivatives biosynthesis pathway and the photosynthesis-antenna proteins.


Assuntos
Clorofila/análise , Citrus/genética , Citrus/microbiologia , Flavonoides/análise , Frutas/microbiologia , Interações Hospedeiro-Patógeno , Liberibacter/patogenicidade , Pigmentos Biológicos , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Produtos Agrícolas/fisiologia , Frutas/genética , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Metaboloma , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma
14.
Food Sci Nutr ; 8(11): 5811-5822, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33282233

RESUMO

In this study, the non-targeted large-scale plant metabolomics (UPLC-Q-Orbitrap-MS) was performed for the comparison of chemical profiling of the leaves, barks, flowers, peels, pulps, and seeds of Clausena lansium (Lour.) Skeels (called "wampee"). A total of 364 metabolites were identified, and 62 potential biomarkers were selected by the multivariate statistical analysis. Hierarchical cluster analysis suggested that the selected biomarkers were significant differential metabolites among various parts of wampee. Metabolic pathway analysis showed a significant enrichment of the "Flavone and flavonol synthesis" and "Isoquinoline alkaloid biosynthesis" pathway. This study provides important information for the isolation and identification of functional components from different tissues of wampee and the metabolic biosynthesis pathway elucidation in detail.

15.
BMC Plant Biol ; 20(1): 361, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32736527

RESUMO

BACKGROUND: Color formation in Hylocereus spp. (pitayas) has been ascribed to the accumulation of betalains. However, several studies have reported the presence of anthocyanins in pitaya fruit and their potential role in color formation has not yet been explored. In this study, we profiled metabolome and transcriptome in fruit of three cultivars with contrasting flesh colors (red, pink and white) to investigate their nutritional quality and the mechanism of color formation involving anthocyanins. RESULTS: Results revealed that pitaya fruit is enriched in amino acid, lipid, carbohydrate, polyphenols, vitamin and other bioactive components with significant variation among the three cultivars. Anthocyanins were detected in the fruit flesh and accumulation levels of Cyanidin 3-glucoside, Cyanidin 3-rutinoside, Delphinidin 3-O-(6-O-malonyl)-beta-glucoside-3-O-beta-glucoside and Delphinidin 3-O-beta-D-glucoside 5-O-(6-coumaroyl-beta-D-glucoside) positively correlated with the reddish coloration. Transcriptome data showed that the white cultivar tends to repress the anthocyanin biosynthetic pathway and divert substrates to other competing pathways. This perfectly contrasted with observations in the red cultivar. The pink cultivar however seems to keep a balance between the anthocyanin biosynthetic pathway and the competing pathways. We identified several active transcription factors of the MYB and bHLH families which can be further investigated as potential regulators of the anthocyanin biosynthetic genes. CONCLUSIONS: Collectively, our results suggest that anthocyanins partly contribute to color formation in pitaya fruit. Future studies aiming at manipulating the biosynthetic pathways of anthocyanins and betalains will better clarify the exact contribution of each pathway in color formation in pitayas. This will facilitate efforts to improve pitaya fruit quality and appeal.


Assuntos
Antocianinas/metabolismo , Cactaceae/metabolismo , Frutas/metabolismo , Pigmentação/fisiologia , Vias Biossintéticas/genética , Cactaceae/genética , Flavonoides/metabolismo , Frutas/genética , Genes de Plantas , Metaboloma , Pigmentação/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
16.
Molecules ; 25(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963595

RESUMO

Citrus is a globally consumed fruit with great popularity. Mandarin (Citrus reticulata cv. 'Shatangju') is a local variety, and its planting area and yield are the greatest regarding fruit tree planting in Guangdong Province, China. However, its resistance to Huanglongbing (HLB) is weak. After infection by HLB, the fruits cannot develop normally. In this study, four kinds of fruits were classified as HBG, XQG, ZQG, and DHG, according to the color of their peels. The metabolomes of the three abnormally colored groups (HBG, XQG, and ZQG) and the normally colored group (DHG) were compared using a UPLC-QQQ-MS-based metabolomics approach. In total, 913 metabolites were identified and classified into 23 different categories, including phenylpropanoids and flavonoids; among them, 215 (HBG, 177; XQG, 124; and ZQG, 62) metabolites showed differential accumulation in the three comparison groups (HBG/XQG/ZQG versus DHG). A total of 2 unique metabolites, O-caffeoyl maltotriose and myricetin were detected only in DHG samples. When comparing HBG with DHG, there were 109 decreased and 68 increased metabolites; comparing XQG with DHG, there were 88 decreased and 36 increased metabolites; comparing ZQG with DHG, 41 metabolites were decreased, and 21 metabolites were increased. Metabolic pathway enrichment analysis of these differential metabolites showed significant enrichment of the "phenylpropanoid biosynthesis" pathway in all comparison groups. The hierarchical cluster analysis of the differential metabolites of the four groups showed a clear grouping patterns. The relative contents of three phenylpropanoids, four flavonoids, two alkaloids, one anthocyanin, and two other metabolites were significantly different between each comparison group. This study might provide fundamental insight for the isolation and identification of functional compounds from the peels of citrus fruit infected with HLB and for in-depth research on the effect of HLB on the formation of fruits pigment and the development of HLB-resistant citrus varieties.


Assuntos
Citrus/química , Metabolômica/métodos , Rhizobiaceae/patogenicidade , Alcaloides/isolamento & purificação , Antocianinas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Citrus/microbiologia , Análise por Conglomerados , Resistência à Doença , Flavonoides/isolamento & purificação , Frutas/química , Frutas/microbiologia , Espectrometria de Massas , Redes e Vias Metabólicas , Propanóis/isolamento & purificação
17.
Int J Biol Macromol ; 156: 1323-1329, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760007

RESUMO

Citrus grandis 'Tomentosa' which is a special Citrus cultivar, has been employed as cough suppressant and expectorant in traditional Chinese medicine for thousands of years. The aim of this study is to investigate the immunomodulatory role of an acidic polysaccharide (designated as CGTP-AP) purified from C. grandis 'Tomentosa'. CGTP-AP showed effective immune activation in RAW264.7 macrophages at the concentration of 1-100 µg/mL. CGTP-AP could promote the release of NO in dose- and time-dependent manners. Enzyme-Linked Immunosorbent Assay (ELISA) and RT-PCR analysis demonstrated that CGTP-AP could stimulate the secretion of TNF-α and IL-6 in a dosage-dependent way. Western blot analysis and RT-PCR analysis indicated that CGTP-AP treatment could induce the iNOS and COX-2 expression in RAW264.7 macrophages. By conducting the inhibitors experiments, the activation of NF-κB and MAPK signaling pathways by CGTP-AP treatment was confirmed. Therefore, the present results declared that CGTP-AP could be a promising candidate as a potent immunomodulator for the application in future pharmaceutical development.


Assuntos
Citrus/química , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Polissacarídeos/farmacologia , Animais , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Polissacarídeos/química , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
18.
J Basic Microbiol ; 60(1): 82-88, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31650621

RESUMO

Involvement of LaeA in various biological processes of filamentous fungi has been demonstrated. However, its role in Penicillium digitatum, the causal agent of citrus postharvest green mold, remains unclear. In this study, a ΔPdLaeA mutant was constructed using homologous recombination. The production of conidia by the ΔPdLaeA mutant was reduced by half compared with that of the wild-type strain. The sensitivity of the ΔPdLaeA mutant increased under alkaline conditions. The virulence assay revealed that PdLaeA was dispensable for the virulence of P. digitatum. Comparative transcriptome analysis revealed that the function loss of PdLaeA resulted in the reduced expression of several secondary metabolite gene clusters. In addition, expression of several key regulators of conidiation (BrlA, FlbA, FlbC, FlbD, and FluG) was also downregulated in the ΔPdLaeA mutant. In summary, the present work demonstrated that PdLaeA was involved in the regulation of SM biosynthesis, as well as the development and environmental adaptation of P. digitatum.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Penicillium/genética , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Citrus/microbiologia , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Família Multigênica/genética , Penicillium/crescimento & desenvolvimento , Penicillium/metabolismo , Penicillium/fisiologia , Deleção de Sequência , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Esporos Fúngicos/fisiologia , Fatores de Transcrição/genética , Virulência/genética
19.
Int J Biol Macromol ; 138: 511-518, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31336119

RESUMO

Citrus grandis 'Tomentosa' (CGT) which is a region-famous medicinal and edible plant contains plentiful bioactive polysaccharides, however, its chemical structures and specific bioactivities still need to be further explored. In the present study, an acidic polysaccharide (CGTP-AP) was extracted and purified from the pulps of CGT. The structure elucidation and anti-cancer activity of CGTP-AP were investigated. Structure characterization indicated that CGTP-AP was a homogeneous heteropolysaccharide composed of arabinose, galactose and galacturonic acid in a molar ratio of 2.45:1:2.77, with an average molecular weight of 2721.68 kDa. Partial acid hydrolysis, methylation and NMR spectrometry revealed that the backbone of CGTP-AP mainly composed of (1 → 4)-α-D-galacturonan, while the branch principally consisted of (1 → 5)-α-L-Araf. In addition, CGTP-AP exhibited effective anti-proliferation against colon cancer cells LOVO and SW620 cells in dose- and time-dependent manners, with IC50 values of 5.55, 4.35 and 3.52 mg mL-1 after 24, 48 and 72 h, and 5.33, 3.63 and 2.97 mg mL-1 after 24, 48 and 72 h, respectively. This study indicated that CGTP-AP might be utilized as a promising food supplement for the patients of colon disorders.


Assuntos
Citrus/química , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Hidrólise , Espectroscopia de Ressonância Magnética , Metilação , Extratos Vegetais/isolamento & purificação , Polissacarídeos/isolamento & purificação , Relação Estrutura-Atividade
20.
J Exp Bot ; 70(10): 2759-2771, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30840066

RESUMO

Neohesperidosides are disaccharides that are present in some flavonoids and impart a bitter taste, which can significantly affect the commercial value of citrus fruits. In this study, we identified three flavonoid-7-O-di-glucosyltransferase (dGlcT) genes closely related to 1,2-rhamnosyltransferase (1,2RhaT) in citrus genomes. However, only 1,2RhaT was directly linked to the accumulation of neohesperidoside, as demonstrated by association analysis of 50 accessions and co-segregation analysis of an F1 population derived from Citrus reticulata × Poncirus trifoliata. In transgenic tobacco BY2 cells, over-expression of CitdGlcTs resulted in flavonoid-7-O-glucosides being catalysed into bitterless flavonoid-7-O-di-glucosides, whereas over-expression of Cit1,2RhaT converted the same substrate into bitter-tasting flavonoid-7-O-neohesperidoside. Unlike 1,2RhaT, during citrus fruit development the dGlcTs showed an opposite expression pattern to CHS and CHI, two genes encoding rate-limiting enzymes of flavonoid biosynthesis. An uncoupled availability of dGlcTs and substrates might result in trace accumulation of flavonoid-7-O-di-glucosides in the fruit of C. maxima (pummelo). Past human selection of the deletion and functional mutation of 1,2RhaT has led step-by-step to the evolution of the flavor-related metabolic network in citrus. Our research provides the basis for potentially improving the taste in citrus fruit through manipulation of the network by knocking-out 1,2RhaT or by enhancing the expression of dGlcT using genetic transformation.


Assuntos
Citrus/metabolismo , Flavonoides/metabolismo , Frutas/metabolismo , Poncirus/metabolismo , Citrus/enzimologia , Citrus/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Genes de Plantas , Hibridização Genética , Poncirus/enzimologia , Poncirus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...