Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Gerontol Geriatr ; 117: 105253, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37956585

RESUMO

BACKGROUND: Impairment of cardiac function progresses after acute myocardial infarction (AMI). Lactate dehydrogenase (LDH), a marker of cardiac injury and an enzyme in anaerobic glycolysis, is suggested as a risk factor for patient mortality in inflammatory diseases. METHODS: In this study, 448 older and 445 younger AMI patients were recruited and followed up. The effect of baseline serum LDH on post-infarction cardiac function was assessed at follow-up. RESULTS: Elderly patients in the high baseline LDH group had a high risk of being diagnosed with cardiac insufficiency during follow-up (adjusted hazard ratio: 3.643, P = 0.007), and the follow-up left ventricular ejection fraction of the quartile subgroup tended to decrease with increasing in baseline serum LDH (adjusted odds ratio: 1.301, P = 0.001) for each 100 U/L increase. The LVDd and LVVd of elderly patients in the high LDH group were not significantly different from those of patients in the normal LDH group at baseline but were further increased in the high LDH group at follow-up. In younger patients, the effect of LDH on post-infarction cardiac structure and function was similar to that in older patients, but unlike older patients, Cox regression analysis showed that LDH was not the predominant influence. CONCLUSION: Longitudinal changes in cardiac function were independently associated with high baseline serum LDH levels in patients with AMI. Baseline LDH levels are superior to other myocardial injury markers and may be a useful parameter in predicting future cardiac dysfunction after AMI, especially in the elderly.


Assuntos
Infarto do Miocárdio , Função Ventricular Esquerda , Humanos , Idoso , Volume Sistólico , Seguimentos , Infarto do Miocárdio/complicações , Lactato Desidrogenases
2.
ESC Heart Fail ; 10(6): 3622-3636, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37798907

RESUMO

AIMS: Left ventricular remodelling subsequent to myocardial infarction (MI) constitutes a pivotal underlying cause of heart failure. Intervention with the nontoxic endogenous aryl hydrocarbon receptor (AHR) agonist 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) in the acute phase of MI has been shown to ameliorate cardiac function, but its role in the chronic phase remains obscured. This study explores the beneficial role of ITE in delaying the progression of heart failure in the chronic phase of MI. METHODS AND RESULTS: MI rats established by ligating the left anterior descending coronary artery were treated with the indicated concentration of the AHR agonist ITE or vehicle alone. Echocardiography was performed to determine cardiac structure and function; myocardial morphology and fibrosis were observed by haematoxylin and eosin and Masson's trichrome staining; serum biochemical indices, BNP, and inflammatory cytokine levels were detected by enzyme-linked immunosorbent assay; F4/80+ iNOS+ M1 macrophages and F4/80+ CD206+ M2 macrophages were detected by immunofluorescence; the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling assay was used to detect the apoptosis of cardiomyocytes; ultrastructural changes in myocardial tissue were observed by transmission electron microscopy; and Cyp1a1, Akt, P-Akt, p70S6K, P-p70S6K, Bcl-2, Bax, caspase-3, and cleaved caspase-3 protein levels were determined via Western blotting. We found that therapy with the AHR agonist ITE rescued cardiac remodelling and dysfunction in rats with MI and attenuated myocardial fibrosis, inflammation, and mitochondrial damage. Further studies confirmed that ITE dose-dependently improved myocardial cell apoptosis after MI, as demonstrated by reduced levels of the apoptosis-related proteins cleaved caspase-3 and Bax but increased expression levels of Bcl-2. These effects were attributed to ITE-induced activation of AHR receptors, leading to the down-regulation of Akt and p70S6K phosphorylation. CONCLUSIONS: The AHR agonist ITE alleviates cardiomyocyte apoptosis through the Akt/p70S6K signalling pathway, thereby rescuing left ventricular adverse remodelling and cardiac dysfunction after MI.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Ratos , Animais , Caspase 3 , Proteínas Quinases S6 Ribossômicas 70-kDa , Proteínas Proto-Oncogênicas c-akt , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo , Remodelação Ventricular , Proteína X Associada a bcl-2 , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo
3.
Front Pharmacol ; 14: 1101703, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383718

RESUMO

Background: The present study aimed to investigate the protective effect of the water extract of Amydrium sinense (Engl.) H. Li (ASWE) against hepatic fibrosis (HF) and clarify the underlying mechanism. Methods: The chemical components of ASWE were analysed by a Q-Orbitrap high-resolution mass spectrometer. In our study, an in vivo hepatic fibrosis mouse model was established via an intraperitoneal injection of olive oil containing 20% CCl4. In vitro experiments were conducted using a hepatic stellate cell line (HSC-T6) and RAW 264.7 cell line. A CCK-8 assay was performed to assess the cell viability of HSC-T6 and RAW264.7 cells treated with ASWE. Immunofluorescence staining was used to examine the intracellular localization of signal transducer and activator of transcription 3 (Stat3). Stat3 was overexpressed to analyse the role of Stat3 in the effect of ASWE on HF. Results: Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that candidate targets of ASWE, associated with protective effects against hepatic fibrosis, were related to inflammation response. ASWE ameliorated CCl4-induced liver pathological damage and reduced the liver index and alanine transaminase (ALT) and aspartate transaminase (AST) levels. ASWE also decreased the serum levels of collagen Ⅰ (Col Ⅰ) and hydroxyproline (Hyp) in CCl4-treated mice. In addition, the expression of fibrosis markers, including α-SMA protein and Acta2, Col1a1, and Col3a1 mRNA, was downregulated by ASWE treatment in vivo. The expression of these fibrosis markers was also decreased by treatment with ASWE in HSC-T6 cells. Moreover, ASWE decreased the expression of inflammatory markers, including the Tnf-α, Il6 and Il1ß, in RAW264.7 cells. ASWE decreased the phosphorylation of Stat3 and total Stat3 expression and reduced the mRNA expression of the Stat3 gene in vivo and in vitro. ASWE also inhibited the nuclear shuttling of Stat3. Overexpression of Stat3 weakened the therapeutic effect of ASWE and accelerated the progression of HF. Conclusion: The results show that ASWE protects against CCl4-induced liver injury by suppressing fibrosis, inflammation, HSC activation and the Stat3 signaling pathway, which might lead to a new approach for preventing HF.

4.
Biomed Res Int ; 2022: 5752575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164453

RESUMO

In this paper, Lignosus rhinocerotis (Cooke) Ryvarden (L. rhinocerotis) cultivated in rice medium (LRR) and in sawdust medium (LRS) was harvested. Then, in terms of the LRR, LRS, and wild L. rhinocerotis (LRW), the total flavonoid contents, total polyphenol contents, total polysaccharide contents, and metabolites were detected; antioxidants of their aqueous extracts and anti-inflammatory of their polysaccharides were performed. In addition, the possible mechanism of the polysaccharides of L. rhinocerotis inhibiting lung damage was elucidated. The results showed that 32 compounds were characterized in L. rhinocerotis, including flavonoids, terpenoids, lignans, and steroids and there were 20 compounds in cultivated and wild L. rhinocerotis; LRR has the highest total polyphenol and flavonoid contents, as well as ABTS and DPPH scavenging capacity. The total polysaccharide contents and the FRAP scavenging capacity of wild L. rhinocerotis were higher than those of cultivated L. rhinocerotis. The inhibition of polysaccharides of LRW (PLRW) on LPS-induced MRC-5 damage was stronger than that of the polysaccharides from cultivated L. rhinocerotis. The PLRW may alleviate lung damage by inhibiting the NLRP3 pathway and thereby suppressing the inflammatory response. In summary, both cultivated and wild L. rhinocerotis are abundant in bioactive components and have antioxidant and anti-inflammatory activities.


Assuntos
Antioxidantes , Lignanas , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Carboidratos da Dieta , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Extratos Vegetais/farmacologia , Polifenóis , Polyporaceae , Polissacarídeos/metabolismo , Terpenos
5.
Dis Markers ; 2022: 7366337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783017

RESUMO

Objective: To explore the role of circIFITM1 and its potential molecular mechanism in colon cancer. Methods: The circIFITM1 in human samples and cell lines of colon cancer was measured via RT-PCR. The cyclicity of circIFITM1 was confirmed by agarose gel electrophoresis and Sanger sequencing, and the stability of circIFITM1 was confirmed by actinomycin D assay. The proliferative and invasive ability was detected by the CCK-8 assay and Transwell assay, respectively. RNA pull-down assay confirmed a combination of circIFITM1 and miRNA. Dual-luciferase reporter gene was used to detect the direct relationship between miRNA and the target gene. Results: circIFITM1 originated from the maternal gene IFITM1and had high stability. It was resistant to processing by actinomycin D. Upregulating circIFITM1 facilitated the proliferation and invasion of Lovo cells, while interfering with circIFITM1 expression inhibited them. circIFITM1 interacted with miR-802, and miR-802 targeted the 3'UTR of FOXP1. The overexpression of circIFITM1 downregulated miR-802 and upregulated FOXP1. Conclusion: circIFITM1 facilitates the proliferative and invasive abilities via miR-802/FOXP1 in Lovo cells.


Assuntos
Neoplasias do Colo , MicroRNAs , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Colo/genética , Dactinomicina/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética
6.
Front Pharmacol ; 13: 1043022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588728

RESUMO

Ethnopharmacological relevance: Hepatic fibrosis (HF) occurs in response to chronic liver injury and may easily develop into irreversible liver cirrhosis or even liver cancer. Amydrium hainanense water extract (AHWE) is a water-soluble component extracted from the Yao medicine Amydrium hainanense (H.Li, Y.Shiao & S.L.Tseng) H.Li, which is commonly used for treating inflammatory diseases in folk. Previous evidence suggested that AHWE significantly inhibited hepatic stellate cell activation. However, little is known regarding the therapeutic effect of AHWE in HF and its underlying action mechanism. Objective: Investigation of the therapeutic effect of AHWE in HF and its underlying mechanism. Methods: The therapeutic effect of AHWE was tested in vivo using an HF mouse model via an intraperitoneal injection of carbon tetrachloride (CCl4). Histological evaluation of liver injury and fibrosis were tested by H&E staining and Masson's trichrome staining. Serum levels of ALT, AST, collagen type I (Col I), and hydroxyproline (HYP) were measured. The mRNA expression of liver fibrotic and inflammatory genes were tested, and the protein levels of alpha smooth muscle actin (α-SMA) and signal transducers and activators of transcription 3 (STAT3) were analyzed. The in vitro experiments were conducted using HSC-T6 and RAW264.7 cell lines. Results: Treatment with AHWE significantly reversed histopathological liver damage and liver function abnormalities in CCl4 mouse model. Also, the serum levels of ALT, AST, Col I, and HYP in CCl4-induced HF mice were improved in AHWE treatment. Further, AHWE showed a remarkable inhibitory effect on the expression of fibrosis markers (Acta2, Col1a1, and Col3a1) and inflammatory factors (Stat3, Tnfa, Il6, and Il1b) induced by CCl4. The results of in vitro experiments were consistent with those obtained in vivo. In addition, it is shown that STAT3 signaling was involved in the anti-fibrotic effects of AHWE as evidenced by STAT3 overexpression. Conclusion: The present study proposed a novel ethnomedicine for HF and suggested the underlying role of STAT3 signaling pathway regulation in this anti-fibrotic effect of the proposed medicine. These findings would serve as solid scientific evidence in support of the development of AHWE as a novel alternative or complementary therapy for HF prevention and treatment.

7.
J Transl Med ; 18(1): 107, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122364

RESUMO

BACKGROUND: Human defensin-5 (HD-5) is a key antimicrobial peptide which plays an important role in host immune defense, while the short half-life greatly limits its clinical application. The purpose of this study was to investigate the effects of an engineering probiotic producing HD-5 on intestinal barrier and explore its underlying mechanism METHODS: We constructed the pN8148-SHD-5 vector, and transfected this plasmid into Lactococcus lactis (L. lactis) to create the recombinant NZ9000SHD-5 strain, which continuously produces mature HD-5. NZ9000SHD-5 was administrated appropriately in a dextran sodium sulfate (DSS)-induced colitis model. Alterations in the wounded intestine were analyzed by hematoxylin-eosin staining. The changes of intestinal permeability were detected by FITC-dextran permeability test, the tight junction (TJ) proteins ZO-1 and occludin and cytokines were analyzed by western blotting or enzyme linked immunosorbent assay. In Caco-2 cell monolayers, the permeability were analyzed by transepithelial electrical resistance, and the TJ proteins were detected by western blotting and immunofluorescence. In addition, NF-κB signaling pathway was investigated to further analyze the molecular mechanism of NZ9000SHD-5 treatment on inducing intestinal protection in vitro. RESULTS: We found oral administration with NZ9000SHD-5 significantly reduced colonic glandular structure destruction and inflammatory cell infiltration, downregulated expression of several inflammation-related molecules and preserved epithelial barrier integrity. The same protective effects were observed in in vitro experiments, and pretreatment of macrophages with NZ9000SHD-5 culture supernatants prior to LPS application significantly reduced the expression of phosphorylated nuclear transcription factor-kappa B (NF-κB) p65 and its inhibitor IκBα. CONCLUSIONS: These results indicate the NZ9000SHD-5 can alleviate DSS-induced mucosal damage by suppressing NF-κB signaling pathway, and NZ9000SHD-5 may be a novel therapeutic means for ulcerative colitis.


Assuntos
Colite , Probióticos , Animais , Células CACO-2 , Colite/induzido quimicamente , Colite/terapia , Defensinas , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Humanos , Mucosa Intestinal , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B , Sulfatos
8.
J Cell Mol Med ; 22(1): 546-557, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29148173

RESUMO

Disruption of the intestinal epithelial barrier, that involves the activation of C-Jun N-terminal kinase (JNK), contributes to initiate and accelerate inflammation in inflammatory bowel disease. Metformin has unexpected beneficial effects other than glucose-lowering effects. Here, we provided evidence that metformin can protect against intestinal barrier dysfunction in colitis. We showed that metformin alleviated dextran sodium sulphate (DSS)-induced decreases in transepithelial electrical resistance, FITC-dextran hyperpermeability, loss of the tight junction (TJ) proteins occludin and ZO-1 and bacterial translocation in Caco-2 cell monolayers or in colitis mice models. Metformin also improved TJ proteins expression in ulcerative colitis patients with type 2 diabetes mellitus. We found that metformin ameliorated the induction of colitis and reduced the levels of pro-inflammatory cytokines IL-6, TNF-a and IL-1ß. In addition, metformin suppressed DSS-induced JNK activation, an effect dependent on AMP-activated protein kinase α1 (AMPKα1) activation. Consistent with this finding, metformin could not maintain the barrier function of AMPKα1-silenced cell monolayers after DSS administration. These findings highlight metformin protects against intestinal barrier dysfunction. The potential mechanism may involve in the inhibition of JNK activation via an AMPKα1-dependent signalling pathway.


Assuntos
Adenilato Quinase/metabolismo , Intestinos/enzimologia , Intestinos/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metformina/farmacologia , Substâncias Protetoras/farmacologia , Doença Aguda , Animais , Translocação Bacteriana/efeitos dos fármacos , Células CACO-2 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Colite/patologia , Sulfato de Dextrana , Ativação Enzimática/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Intestinos/patologia , Masculino , Metformina/uso terapêutico , Camundongos Endogâmicos C57BL , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
9.
Antonie Van Leeuwenhoek ; 109(10): 1389-96, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27431681

RESUMO

The human gut microbiota plays an important role in human health and might also be implicated in kidney disease. The interest in butyrate producing bacteria has recently increased and is a poorly understood faecal condition in chronic kidney disease (CKD). Therefore, we evaluated differences of the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii in the faeces of Chinese patients with CKD. A case-control study was carried out for 65 CKD patients and 20 healthy controls. Differences were quantitatively validated using quantitative real-time polymerase chain reaction (qPCR). Spearman rank correlation was used to analyse the correlation between gut microbiota and clinical variables. Roseburia spp. and F. prausnitzii were significantly different in CKD patients and controls (p = 0.001; p = 0.025, respectively) and reduced more markedly in end stage renal disease (p = 0.000; p = 0.003, respectively) and microinflammation (p = 0.004; p = 0.001, respectively). Roseburia spp. and F. prausnitzii were negatively associated with C-reactive protein in plasma (r = -0.493, p = 0.00; r = -0.528, p = 0.000; respectively) and Cystatin C (r = -0.321, p = 0.006; r = -0.445, p = 0.000; respectively). They were positively associated with eGFR (r = 0.347, p = 0.002; r = 0.416, p = 0.000; respectively). The negative correlation between Roseburia spp., F. prausnitzii and CRP and renal function suggested that the depletion of butyrate producing bacteria may contribute to CKD-associated inflammation and CKD progression. Roseburia spp. and F. prausnitzii may thus serve as 'microbiomarkers'.


Assuntos
Butiratos/metabolismo , Clostridiales/metabolismo , Faecalibacterium prausnitzii/metabolismo , Insuficiência Renal Crônica/microbiologia , Adulto , Estudos de Casos e Controles , Progressão da Doença , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Humanos , Masculino , Reação em Cadeia da Polimerase em Tempo Real
10.
Int J Mol Sci ; 13(7): 8308-8323, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22942704

RESUMO

Fruit wastes are one of the main sources of municipal waste. In order to explore the potential of fruit wastes as natural resources of bioactive compounds, the antioxidant potency and total phenolic contents (TPC) of lipophilic and hydrophilic components in wastes (peel and seed) of 50 fruits were systematically evaluated. The results showed that different fruit residues had diverse antioxidant potency and the variation was very large. Furthermore, the main bioactive compounds were identified and quantified, and catechin, cyanidin 3-glucoside, epicatechin, galangin, gallic acid, homogentisic acid, kaempferol, and chlorogenic acid were widely found in these residues. Especially, the values of ferric-reducing antioxidant power (FRAP), trolox equivalent antioxidant capacity (TEAC) and TPC in the residues were higher than in pulps. The results showed that fruit residues could be inexpensive and readily available resources of bioactive compounds for use in the food and pharmaceutical industries.


Assuntos
Antioxidantes/isolamento & purificação , Frutas/química , Extratos Vegetais/isolamento & purificação , Antioxidantes/química , Oxirredução , Extratos Vegetais/química , Polifenóis/química , Polifenóis/isolamento & purificação , Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...