Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(21): 9348-9364, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37165691

RESUMO

Enzyme replacement therapy shows remarkable clinical improvement in treating lysosomal storage disorders. However, this therapeutic approach is hampered by limitations in the delivery of the enzyme to cells and tissues. Therefore, there is an urgent, unmet clinical need to develop new strategies to enhance the enzyme delivery to diseased cells. Graphene-based materials, due to their dimensionality and favourable pattern of interaction with cells, represent a promising platform for the loading and delivery of therapeutic cargo. Herein, the potential use of graphene-based materials, including defect-free graphene with positive or negative surface charge and graphene oxide with different lateral dimensions, was investigated for the delivery of lysosomal enzymes in fibroblasts derived from patients with Mucopolysaccharidosis VI and Pompe disease. We report excellent biocompatibility of all graphene-based materials up to a concentration of 100 µg mL-1 in the cell lines studied. In addition, a noticeable difference in the uptake profile of the materials was observed. Neither type of graphene oxide was taken up by the cells to a significant extent. In contrast, the two types of graphene were efficiently taken up, localizing in the lysosomes. Furthermore, we demonstrate that cationic graphene flakes can be used as carriers for arylsulfatase B enzyme, for the delivery of the lacking enzyme to the lysosomes of Mucopolysaccharidosis VI fibroblasts. Arylsulfatase B complexed with cationic graphene flakes not only retained the enzymatic activity, but also exerted biological effects almost twice as high as arylsulfatase B alone in the clearance of the substrate in Mucopolysaccharidosis VI fibroblasts. This study lays the groundwork for the potential use of graphene-based materials as carriers for enzyme replacement therapy in lysosomal storage disorders.


Assuntos
Grafite , Mucopolissacaridose VI , N-Acetilgalactosamina-4-Sulfatase , Humanos , Grafite/metabolismo , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Mucopolissacaridose VI/metabolismo , Fibroblastos , Lisossomos/metabolismo
2.
ACS Appl Nano Mater ; 5(9): 12626-12636, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36185165

RESUMO

In this work, we apply liquid cascade centrifugation to highly concentrated graphene dispersions produced by liquid-phase exfoliation in water with an insoluble bis-pyrene stabilizer to obtain fractions containing nanosheets with different lateral size distributions. The concentration, stability, size, thickness, and the cytotoxicity profile are studied as a function of the initial stabilizer concentration for each fraction. Our results show that there is a critical initial amount of stabilizer (0.4 mg/mL) above which the dispersions show reduced concentration, stability, and biocompatibility, no matter the lateral size of the flakes.

3.
Chem Mater ; 32(18): 7895-7907, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32982044

RESUMO

Metal sulfide and metal oxide alloys of the form Mo1-x W x S2 and Mo1-x W x O3 (0 ≤ x ≤ 1) are synthesized with varying nominal stoichiometries (x = 0, 0.25, 0.50, 0.75, and 1.0) by thermolysis of the molecular precursors MoL4 and WS(S2)L2 (where L = S2CNEt2) in tandem and in various ratios. Either transition-metal dichalcogenides or transition-metal oxides can be produced from the same pair of precursors by the choice of reaction conditions; metal sulfide alloys of the form Mo1-x W x S2 are produced in an argon atmosphere, while the corresponding metal oxide alloys Mo1-x W x O3 are produced in air, both under atmospheric pressure at 450 °C and for only 1 h. Changes in Raman spectra and in powder X-ray diffraction patterns are observed across the series of alloys, which confirm that alloying is successful in the bulk materials. For the oxide materials, we show that the relatively complicated diffraction patterns are a result of differences in the tilt angle of MO6 octahedra within three closely related unit cell types. Alloying of Mo and W in the products is characterized at the microscale and nanoscale by scanning electron microscopy-energy-dispersive X-ray spectroscopy (EDX) and scanning transmission electron microscopy-EDX spectroscopy, respectively.

5.
Chem Sci ; 10(4): 1035-1045, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30774899

RESUMO

Solventless thermolysis of molecular precursors followed by liquid phase exfoliation allows access to two-dimensional IV-VI semiconductor nanomaterials hitherto unreachable by a scalable processing pathway. Firstly, the use of metal dithiocarbamate precursors to produce bulk alloys in the series Pb1-x Sn x S (0 ≤ x ≤ 1) by thermolysis is demonstrated. The bulk powders are characterised by powder X-ray diffraction (pXRD), Raman spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. It was found that there is a transition from cubic structures for the Pb-rich alloys including the end compound, PbS (0 ≤ x ≤ 0.4) to layered orthorhombic structures for Sn-rich alloys and the end compound SnS (0.5 ≤ x ≤ 1.0). A smooth elemental progression from lead-rich to tin-rich monochalcogenides across the series of materials is observed. Liquid phase exfoliation was applied to produce two dimensional (2D) nanosheets for a mixed Pb1-x Sn x S alloy (where x = 0.8) in 1-methyl-2-pyrrolidone (NMP) using the synthetic bulk powder as starting material. The nanosheet products were characterized by SEM, atomic force microscopy (AFM) and high angle annular dark field scanning transmission electron microscopy (HAADF STEM). First principle calculations of Pb1-x Sn x S alloys show that the Sn content x modifies the size of the band gap by several 100 meV and that x changes the gap type from indirect in SnS to direct in Pb0.2Sn0.8S. These results are supported by UV-Vis spectroscopy of exfoliated Pb0.2Sn0.8S. The method employed demonstrates a new, scalable, processing pathway which can potentially be used to synthesize a range of synthetic layered structures that can be exfoliated to as-yet unaccessed 2D materials with tunable electronic properties.

6.
Chem Commun (Camb) ; 55(1): 99-102, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30512029

RESUMO

Direct synthesis of either 2H-MoS2 or α-MoO3 is made possible by thermolysis of the same single source precursor in either argon or air at moderate temperatures.

7.
Chem Commun (Camb) ; 54(31): 3831-3834, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29564428

RESUMO

Black phosphorus is a two-dimensional material that has potential applications in energy storage, high frequency electronics and sensing, yet it suffers from instability in oxygenated and/or aqueous systems. Here we present the use of a polymeric stabilizer which prevents the degradation of nearly 68% of the material in aqueous media over the course of ca. 1 month.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...