Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(23): 7012-7018, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38820129

RESUMO

Light management is critical to maximizing the external quantum efficiency of perovskite light-emitting diodes (PeLEDs), but strategies for enhancing light out-coupling are typically complex and expensive. Here, using a facile solvent treatment strategy, we create a layer of lithium fluoride (LiF) nanoislands that serve as a template to reconstruct the light-extracting interfaces for PeLEDs. The nanoisland interface rearranges the near-field light distribution in order to maximize the efficiency of internal light extraction. With the proper adjustment of the nanoisland size and distribution, we have achieved an optimal balance between charge injection and light out-coupling, resulting in bright, pure-red quasi-two-dimensional PeLEDs with a 21.8% peak external quantum efficiency.

2.
Light Sci Appl ; 13(1): 111, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734686

RESUMO

Quantum-confined CsPbBr3 perovskites are promising blue emitters for ultra-high-definition displays, but their soft lattice caused by highly ionic nature has a limited stability. Here, we endow CsPbBr3 nanoplatelets (NPLs) with atomic crystal-like structural rigidity through proper surface engineering, by using strongly bound N-dodecylbenzene sulfonic acid (DBSA). A stable, rigid crystal structure, as well as uniform, orderly-arranged surface of these NPLs is achieved by optimizing intermediate reaction stage, by switching from molecular clusters to mono-octahedra, while interaction with DBSA resulted in formation of a CsxO monolayer shell capping the NPL surface. As a result, both structural and optical stability of the CsPbBr3 NPLs is enhanced by strong covalent bonding of DBSA, which inhibits undesired phase transitions and decomposition of the perovskite phase potentially caused by ligand desorption. Moreover, rather small amount of DBSA ligands at the NPL surface results in a short inter-NPL spacing in their closely-packed films, which facilitates efficient charge injection and transport. Blue photoluminescence of the produced CsPbBr3 NPLs is bright (nearly unity emission quantum yield) and peaks at 457 nm with an extremely narrow bandwidth of 3.7 nm at 80 K, while the bandwidth of the electroluminescence (peaked at 460 nm) also reaches a record-narrow value of 15 nm at room temperature. This value corresponds to the CIE coordinates of (0.141, 0.062), which meets Rec. 2020 standards for ultra-high-definition displays.

3.
Materials (Basel) ; 16(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37687741

RESUMO

Yellow phosphorus slag (YPS) is a byproduct from the production of yellow phosphorus. It has potential pozzolanic activity and can be used as a supplementary cementitious material. However, the early strength of cement mortar decreases significantly with increasing YPS dosage, which restricts the utilization of YPS in cement and concrete. This study aimed to increase the pozzolanic activity of YPS ash by thermal activation. The strength method, alkali dissolution method and polymerization degree method were used to evaluate the effect of thermal activation at different temperatures on the pozzolanic activity of YPS ash. The results showed that YPS ash calcined at 800 °C helps to enhance the early strength because the fluorine in cuspidine (Ca4Si2O7F2) is insoluble, reducing the retarding effect on the mortar. The higher late strength of YPS ash calcined at 100 °C was due to the low polymerization degree of [SiO4]. The pozzolanic activity of YPS ash is positively correlated with the dissolution concentration of (Si + Al) and the compressive strength and negatively associated with the polymerization degree. This paper shows a possibility for the large-scale utilization of YPS.

4.
Light Sci Appl ; 12(1): 119, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188664

RESUMO

Film uniformity of solution-processed layers is the cornerstone of large-area perovskite light-emitting diodes, which is often determined by the 'coffee-ring effect'. Here we demonstrate a second factor that cannot be ignored is the solid-liquid interface interaction between substrate and precursor and can be optimized to eliminate rings. A perovskite film with rings can be formed when cations dominate the solid-liquid interface interaction; whereas smooth and homogeneous perovskite emitting layers are generated when anions and anion groups dominate the interaction. This is due to the fact that the type of ions anchored to the substrate can determine how the subsequent film grows. This interfacial interaction is adjusted using carbonized polymer dots, who also orient the perovskite crystals and passivate their buried traps, enabling a 225 mm2 large-area perovskite light-emitting diode with a high efficiency of 20.2%.

5.
Adv Sci (Weinh) ; 10(12): e2207621, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36737845

RESUMO

Seeking clean energy as an alternative to traditional fossil fuels is the inevitable choice to realize the sustainable development of the society. Photocatalytic technique is considered a promising energy conversion approach to store the abundant solar energy into other wieldy energy carriers like chemical energy. Carbon dots, as a class of fascinating carbon nanomaterials, have already become the hotspots in numerous photoelectric researching fields and particularly drawn keen interests as metal-free photocatalysts owing to strong UV-vis optical absorption, tunable energy-level configuration, superior charge transfer ability, excellent physicochemical stability, facile fabrication, low toxicity, and high solubility. In this review, the classification, microstructures, general synthetic methods, optical and photoelectrical properties of carbon dots are systematically summarized. In addition, recent advances of carbon dots based photoinduced reactions including photodegradation, photocatalytic hydrogen generation, CO2 conversion, N2 fixation, and photochemical synthesis are highlighted in detail, deep insights into the roles of carbon dots in various systems combining with the photocatalytic mechanisms are provided. Finally, several critical issues remaining in photocatalysis field are also proposed.

6.
Adv Mater ; 35(43): e2209784, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36525667

RESUMO

Metal halide perovskite nanocrystals (PeNCs) have outstanding luminescent properties that are suitable for displays that have high color purity and high absorption coefficient; so they are evaluated for application as light emitters for organic light-emitting diodes, light-converters for downconversion displays, and future near-eye augmented reality/virtual reality displays. However, PeNCs are chemically vulnerable to heat, light, and moisture, and these weaknesses must be overcome before devices that use PeNCs can be commercialized. This review examines strategies to overcome the low stability of PeNCs and thereby permit the fabrication of stable downconversion films, and summarizes downconversion-type display applications and future prospects. First, methods to increase the chemical stability of PeNCs are examined. Second, methods to encapsulate PeNC downconversion films to increase their lifetime are reviewed. Third, methods to increase the long-term compatibility of resin with PeNCs, and finally, how to secure stability using fillers added to the resin are summarized. Fourth, the method to manufacture downconversion films and the procedure to evaluate their reliability for commercialization is then described. Finally, the prospects of a downconversion system that exploits the properties of PeNCs and can be employed to fabricate fine pixels for high-resolution displays and for near-eye augmented reality/virtual reality devices are explored.

7.
ACS Nano ; 16(6): 9679-9690, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35658393

RESUMO

Close attention to the interfaces of solution-processed metal halide perovskite-based light-emitting devices (LEDs) is crucial for their optimal performance. Solution processing of these devices typically leads to the formation of van der Waals interfaces with a weak connection between different functional layers, leaving great room for improvement in charge transport through strengthening of the interlayer interaction. Here, we have realized a hydrogen-bond-assisted interface that makes use of ultrasmall amine-terminated carbon dots to enhance the interaction between the hole transport layer made of PEDOT:PSS and the hybrid lead bromide perovskite emitting layer, which not only promotes the hole injection efficiency but also orients the quasi-2D perovskite crystals penetrating the vertical direction of the device without any, or very few, horizontal grain boundaries, which has a profound effect on the photophysical and transport properties of the emitting layer. As a result, LEDs based on quasi-2D perovskites show up to 24.5% external quantum efficiency, 80 000 cd m-2 brightness, and over 5-fold extended longevity.

8.
Light Sci Appl ; 10(1): 142, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253707

RESUMO

Carbon dots (CDs) have received immense attention in the last decade because they are easy-to-prepare, nontoxic, and tailorable carbon-based fluorescent nanomaterials. CDs can be categorized into three subgroups based on their morphology and chemical structure: graphene quantum dots (GQDs), carbon quantum dots (CQDs), and carbonized polymer dots (CPDs). The detailed structures of the materials can vary significantly, even within the same category. This property is particularly predominant in chemically synthesized CPDs, as their formation proceeds via the polymerization-carbonization of molecules or polymer precursors. Abundant precursors endow CPDs with versatile structures and properties. A wide variety of carbon nanomaterials can be grouped under the category of CPDs because of their observed diversity. It is important to understand the precursor-dependent structural diversity observed in CPDs. Appropriate nomenclature for all classes and types of CPDs is proposed for the better utilization of these emerging materials.

10.
ACS Appl Mater Interfaces ; 12(34): 38593-38601, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32846498

RESUMO

Recently, the room-temperature phosphorescence (RTP) properties of carbon dots (CDs) have attracted significant interest. However, the regulation of RTP emission faces great challenges because of untunable emissive lifetime and wavelength. Here, ultrahigh-yield acrylamide-based N-doped carbonized polymer dots (AN-CPDs) with ultralong RTP lifetime are synthesized by a one-step hydrothermal addition polymerization and carbonization strategy. The RTP lifetime and wavelength of the proposed AN-CPDs can be regulated by changing the carbonization degree. Thus, the AN-CPDs' RTP lifetimes are in the range of 61.4-466.5 ms, while the RTP emission wavelengths vary from 485 to 558 nm. Further experiment and theoretical calculation proved that RTP can be attributed to the polymer/carbon hybrid structure and nitrous functional groups as the molecular state related emission centers. Supramolecular cross-linking in the aggregated state is vital for the RTP emission of the AN-CPDs by restricting the nonradiative transition of the triplet excitons. AN-CPDs of different RTP lifetimes can be applied to time-resolved multistage information encryption and multistage anticounterfeiting. This work facilitates the optical regulation and application potential of CDs and provides profound insights into the effect of the polymer/carbon hybrid structure on the properties of CDs.

11.
Small ; 16(31): e2001295, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32529773

RESUMO

Exploitation and utilization of sustainable energy sources has increasingly become the common theme of global social development, which has promoted tremendous development of energy conversion devices/technologies. Owing to excellent and unique optical/electrical properties, carbon dots (CDs) have attracted extensive research interest for numerous energy conversion applications. Strong absorption, downconversion photoluminescence, electron acceptor/donor characteristics, and excellent electron conductivity endow CDs with enormous potential for applications in optoelectronic devices. Furthermore, excellent electron transfers/transport capacities and easily manipulable structural defects of CDs offer distinct advantages for electrocatalytic applications. Recent advances in CD-based energy conversion applications, including optoelectronic devices such as light-emitting diodes and solar cells, and electrocatalytic reactions including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and carbon dioxide reduction reaction, are summarized. Finally, current challenges and future prospects for CD-based energy conversion applications are proposed, highlighting the importance of controllable structural design and modifications.

12.
Chem Commun (Camb) ; 56(30): 4156-4159, 2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32215390

RESUMO

Crystallographic orientation control is an effective method to improve the photoelectrochemical water splitting efficiency of BiVO4 photoanodes. Herein, textured and transparent Mo-BiVO4 photoanodes are fabricated by spin-coating Mo-doped BiVO4 nanoparticles on FTO. The photoelectrodes exhibit a current density of 4.15 mA cm-2 and 2.50 mA cm-2 for sulfite and water oxidation, respectively. By connecting the photoelectrode with a CsPbBrI2 perovskite solar cell, a stand-alone tandem water splitting device with a current density of 2.13 mA cm-2 and an STH of 2.43% can be achieved.

13.
Chemistry ; 24(44): 11303-11308, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29904946

RESUMO

Hydrothermal/solvothermal treatments have been widely used to prepare carbonized polymer dots (CPDs) through the condensation and carbonization of small molecules and/or polymers. However, the basic scientific issues, such as the nucleation and growth process, morphology and size control, yield increase, and photoluminescence (PL) mechanism have not been well investigated. In this work, enlightened by the principle of soap-free emulsion polymerization, CPDs with ultrahigh yields (ca. 85 %) were obtained by hydrothermal addition polymerization and carbonization (HAPC) of monomers. The unprecedented initiator-induced addition polymerization was exploited to synthesize CPDs for the first time. As expected in typical emulsion polymerization processes, the developed HAPC method can produce CPDs with designed sizes by systematically regulating the HAPC parameter, uncovering an unprecedented strategy for regulating the size of CPDs. In addition, the obtained CPDs were provided with high photoluminescence quantum yields (PLQY) up to 45.58 %, while the relationship between the photoluminescence (PL) mechanism and chemical structure was investigated. The viscosity parameter was first adopted to measure the polymer property of CPDs. Moreover, the ultrahigh yield and low-cost CPDs elicited the high-performance CPDs/PVA nanocomposite (PVA=poly(vinyl alcohol)) with fluorescence and room-temperature phosphorescence dual-mode emission, demonstrating potential for advanced anti-counterfeit applications.

14.
Adv Mater ; 30(9)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29333763

RESUMO

Cesium-based trihalide perovskites have been demonstrated as promising light absorbers for photovoltaic applications due to their superb composition stability. However, the large energy losses (Eloss ) observed in inorganic perovskite solar cells has become a major hindrance impairing the ultimate efficiency. Here, an effective and reproducible method of modifying the interface between a CsPbI2 Br absorber and polythiophene hole-acceptor to minimize the Eloss is reported. It is demonstrated that polythiophene, deposited on the top of CsPbI2 Br, can significantly reduce electron-hole recombination within the perovskite, which is due to the electronic passivation of surface defect states. In addition, the interfacial properties are improved by a simple annealing process, leading to significantly reduced energy disorder in polythiophene and enhanced hole-injection into the hole-acceptor. Consequently, one of the highest power conversion efficiency (PCE) of 12.02% from a reverse scan in inorganic mixed-halide perovskite solar cells is obtained. Modifying the perovskite films with annealing polythiophene enables an open-circuit voltage (VOC ) of up to 1.32 V and Eloss of down to 0.5 eV, which both are the optimal values reported among cesium-lead mixed-halide perovskite solar cells to date. This method provides a new route to further improve the efficiency of perovskite solar cells by minimizing the Eloss .

15.
ACS Appl Mater Interfaces ; 10(15): 12262-12277, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29164859

RESUMO

Involvement of clear photoluminescence (PL) mechanism in specific chemical structure is at the forefront of carbon dots (CDs). Supramolecular interaction exists in plenty of materials, offering an inherent way to administrate the optical and photophysical properties, especially in terms of newly developed polymer carbon dots (PCDs). However, supramolecular-interaction-derived PL regulation is always ignored in the shadow of many kinds of PL factors, and we still have a limited understanding on the distinct chemical structure and mechanism of supramolecular effect in PCDs. Herein, several distinct photoluminescent phenomena of PCDs under aqueous and solid state are reviewed in terms of supramolecular cross-linking, with highly emphasizing the importance of supramolecular cross-link-enhanced emission (SCEE) effects, and the regulated function of supramolecular interaction's intensity and types between PCDs for special PL behaviors of PCDs. In addition, we categorize the photoluminescent phenomena in PCDs into the following aspects: supramolecular cross-link-enhanced dilute-solution-state emission, concentration-controlled multicolor emission, supramolecular regulation for quenching-resistant solid-state fluorescence, as well as supramolecular cross-link-assisted room-temperature- phosphorescence (RTP) under solid states. Furthermore, the applications of PCDs in light-emitting diodes (LED), solar cells, and anticounterfeiting and data encryption, etc., are presented, based on the distinct supramolecular cross-link-regulated photoluminescent phenomena, especially the solid-state emission. Finally, a brief outlook is given, highlighting the currently existing problems and development direction of supramolecular cross-link-regulated emission in PCDs.

16.
ACS Appl Mater Interfaces ; 9(37): 31345-31351, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28876894

RESUMO

Aqueous-processed nanocrystal solar cells have attracted increasing attention due to the advantage of its environmentally friendly nature, which provides a promising approach for large-scale production. The urgent affair is boosting the power conversion efficiency (PCE) for further commercial applications. The low PCE is mainly attributed to the imperfect device structure, which leads to abundant nonradiative recombination at the interfaces. In this work, an environmentally friendly and efficient method is developed to improve the performance of aqueous-processed CdTe nanocrystal solar cells. Polymer/CdTe planar heterojunction solar cells (PHSCs) with optimized band alignment are constructed, which results in reduced interfacial charge recombination, enhanced carrier collection efficiency and built-in field. Finally, a champion PCE of 5.9%, which is a record for aqueous-processed solar cells based on CdTe nanocrystals, is achieved after optimizing the photovoltaic device.

17.
Small ; 13(11)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28075061

RESUMO

A post-permeation method is constructed for fabricating bulk-heterojunction hybrid solar cells. Porous CdTe film is prepared by annealing the mixture solution of aqueous CdTe nanocrystals and cetyltrimethyl ammonium bromide, after which the post-permeation of polymer is employed. By this method, kinds of polymers can be applied regardless of the intermiscibility with the nanoparticles. The inorganic nanocrystals and the polymer can be treated under respective optimized annealing temperatures, which can facilitate the growth of nanocrystals without damaging the polymers. A high power conversion efficiency of 6.36% in the polymer/nanocrystals hybrid solar cells is obtained via systematical optimization.

18.
Phys Chem Chem Phys ; 18(23): 15791-7, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27229447

RESUMO

Hybrid solar cells (HSCs) based on aqueous polymers and nanocrystals are attractive due to their environmental friendliness and cost effectiveness. In this study, HSCs are fabricated from a series of water-soluble polymers with different highest occupied molecular orbital (HOMO) levels and nanocrystals with different Fermi levels. We demonstrate that the working principle of the aqueous-processed HSCs follows a p-n junction instead of a type-II heterojunction. The function of the polymer is to provide an interface dipole which can improve the build-in potential of the HSCs. Subsequently, the aqueous-processed HSCs are optimized following a p-n junction and an improved PCE of 5.41% is achieved, which is the highest for aqueous-processed HSCs. This study will provide instructive guidelines for the development of aqueous-processed HSCs.

19.
ACS Appl Mater Interfaces ; 8(11): 7101-10, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26931540

RESUMO

A novel kind of hybrid solar cell (HSC) was developed by introducing water-soluble insulating polymer poly(vinyl alcohol) (PVA) into nanocrystals (NCs), which revealed that the most frequently used conjugated polymer could be replaced by an insulating one. It was realized by strategically taking advantage of the characteristic of decomposition for the polymer at annealing temperature, and it was interesting to discover that partial decomposition of PVA left behind plenty of pits on the surfaces of CdTe NC films, enlarging surface contact area between CdTe NCs and subsequently evaporated MoO3. Moreover, the residual annealed PVA filled in the voids among spherical CdTe NCs, which led to the decrease of leakage current. An improved shunt resistance (increased by ∼80%) was achieved, indicating the charge-carrier recombination was effectively overcome. As a result, the new HSCs were endowed with increased Voc, fill factor, and power conversion efficiency compared with the pure NC device. This approach can be applied to other insulating polymers (e.g., PVP) with advantages in synthesis, type, economy, stability, and so on, providing a novel universal cost-effective way to achieve higher photovoltaic performance.

20.
ACS Appl Mater Interfaces ; 8(1): 900-7, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26670604

RESUMO

In this work, improved solar cells from aqueous CdTe NCs is achieved by replacing evaporated MoOx with spiro-OMeTAD as a hole transfer layer. The increased Voc and Jsc can be attributed to interfacial dipole effect and reduced back recombination loss, respectively. A high PCE of 6.56% for solar cells from aqueous NCs is obtained by optimizing the microstructure further.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...