Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Burn Care Res ; 39(4): 481-490, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29901803

RESUMO

We investigated the effects of microporous porcine acellular dermal matrices (MPADM)-containing bone marrow-derived mesenchymal stem cells (BMMSCs) on accessory skin cell regeneration in vivo. Two kinds of the porcine acellular dermal matrices were prepared: one with microsized pores (the MPADM) and another without pores (the PADM). BMMSC populations from a Sprague-Dawley (SD) rat were seeded on both PADMs and MPADMs and cultured in vitro for 5 days. These rats were randomly divided into four groups: BMMSCs on an MPADM and covered with a PADM layer (group A), MPADM without cells and covered with a split-thickness skin graft (SSG) (group B), BMMSCs on an MPADM and covered with an SSG (group C), and BMMSCs on a PADM and covered with an SSG (group D). On post-surgery day (PSD) 5, all groups survived, except for group D. On PSD 7, there was no significant difference in the functional vascularization between groups A, B, and C. On PSD 14, large quantities of new capillaries, a larger rough endoplasmic reticulum in fibroblasts, and de novo unmyelinated nerve endings could be observed at the junction between the skin graft and the dermal matrix in group C; however, these structures were absent in groups A and B. The experimental results showed that MPADM could induce exogenous differentiation of BMMSCs in vivo and promote reconstruction of skin accessory cells.


Assuntos
Derme Acelular , Células da Medula Óssea/fisiologia , Células-Tronco Mesenquimais/fisiologia , Transplante de Pele/métodos , Animais , Biomarcadores/análise , Diferenciação Celular/fisiologia , Masculino , Osteogênese/fisiologia , Porosidade , Ratos , Ratos Nus , Ratos Sprague-Dawley , Suínos , Cicatrização/fisiologia
2.
Zhonghua Shao Shang Za Zhi ; 29(6): 541-7, 2013 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-24495642

RESUMO

OBJECTIVE: To observe the effects of microporous porcine acellular dermal matrix (ADM) combined with bone marrow mesenchymal cells (BMMCs) population containing bone mesenchymal stem cells (BMSCs) of rats on the regeneration of cutaneous appendages cells in nude mice. METHODS: Split-thickness dermal grafts, 20 cm×10 cm in size and 0.3 mm in thickness, were prepared from a healthy pig which was sacrificed under sanitary condition. Laser microporous porcine ADM (LPADM) was produced by laser punching, hypertonic saline solution acellular method, and crosslinking treatment, and nonporous porcine ADM (NPADM) was produced by the latter two procedures. Then the appearance observation, histological examination and scanning electron microscope observation were conducted. BMMCs were isolated and cultured from tibia and femur after sacrifice of an SD rat. Osteogenic and adipogenic differentiation experiments were conducted among the adherent cells in the third passage. Then they were inoculated to LPADM and NPADM to construct BMMCs-LPADM and BMMCs-NPADM materials. Twenty-one healthy nude mice were divided into BMMCs-LPADM+NPADM group (A, n = 6), LPADM+split-thickness skin graft group (B, n = 6), BMMCs-LPADM+split-thickness skin graft group (C, n = 6), BMMCs-NPADM+split-thickness skin graft group (D, n= 3) according to randomized block. After anesthesia, a 2 cm×2 cm full-thickness skin defect reaching deep fascia was reproduced in the middle of the back of each nude mouse, and a split-thickness skin graft of the same size was obtained, and then prepared skin grafts were transplanted to cover the wounds respectively. On post transplantation day (PTD) 5, 7, and 14, local condition and adverse effects observation was conducted; one nude mouse was sacrificed each time to harvest all the transplant for tissue structure observation with HE staining. On PTD 7 and 14, neonatal skin appendages in corresponding composite materials were observed with transmission electron microscope. RESULTS: (1) LPADM and NPADM appeared to be porcelain white, soft, and flexible. No cellular component was observed in acellular dermal matrix. Scanning electron microscope showed that the collagen fibers were orderly arranged. LPADM had microporous structure. (2) Cells in the third passage were orderly arranged with the shape similar to fibroblasts with high growth speed. (3) Induced differentiation experiments showed that cells could differentiate into osteoblasts and adipocytes. (4) On PTD 5, the NPADM in group A was dry in part; skin grafts in group D were dry and necrotic, and there was no infection and inflammation in groups A and D; skin grafts in groups B and C survived. On PTD 7 and 14, the overlaying material in group A was black, dry, and hard in part; the skin grafts in group D turned to be completely black, dry, and necrotic, and pale yellow clear exudate was found in subcutaneous area; there was no obvious purulent discharge in groups A and D; the appearance of skin grafts in groups B and C was close to the surrounding skin. (5) On PTD 5 and 7, in groups A, B, and C, vascularization was apparent in the pores of dermal matrix, and red blood cells could be found. In group D, skin grafts were dry and necrotic. On PTD 14, in groups A, B, and C, the pore structure of dermal matrix was fully vascularized in which a large number of red blood cells were visible. In group A, the microporous dermal matrix survived, but the overlaying NPADM was not attached closely. In groups B and C, the skin grafts were closely connected to the dermal matrix, and no cutaneous appendages were observed. In group C, special monolayer cells were found at the junction between skin graft and dermal matrix. (6) Skin grafts in group D failed to survive; they were not observed with the electron microscope. On PTD 7, there were no significant differences among groups A, B, and C. On PTD 14, no sebaceous gland-like cell or sweat gland-like cell and no newborn nerve ending were observed in skin grafts in groups A and B, in spite of the immigration of fibroblasts. In group C, a large number of new capillaries were observed at the junction between the skin graft and dermal matrix; rough endoplasmic reticulum of fibroblasts proliferated exuberantly; newborn unmyelinated nerve endings were observed; single free sweat gland-like cells and sebaceous gland-like cells were observed in superficial dermal matrix. CONCLUSIONS: LPADM, which provides a "cell niche-like" micro-environment for the migration and differentiation of the BMMCs population, when combining with the split-thickness skin graft, can induce exogenous differentiation of BMSCs in vivo, thus achieving the reconstruction of skin appendages.


Assuntos
Derme Acelular , Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/citologia , Pele Artificial , Animais , Diferenciação Celular , Matriz Extracelular/transplante , Masculino , Camundongos , Camundongos Nus , Ratos , Ratos Sprague-Dawley , Regeneração , Pele/citologia , Transplante de Pele , Suínos , Cicatrização
3.
J Nanosci Nanotechnol ; 10(4): 2342-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20355432

RESUMO

Recently, it has been found that polyvinylpyrrolidone (PVP), a popular stabilizer in nanoparticles syntheses, possesses reducing ability for Ag+. Previous explanations of the reduction are, however, thought to be plausible. Based on detailed characterizations including UV-Vis, FTIR-ATR and XPS, we uncover the existence of Ag+ -O interaction, and demonstrate that the Ag+ -PVP complex is first formed via the coordination between Ag+ and O in the carbonyl group, which facilitates electron exchange between Ag+ and adjacent N atom on the pyrrolidone ring. The N atoms with lone pair electrons serve as an electron donator, leading reduction of Ag- to form PVP-capped Ag nanoparticles ultimately.

4.
J Nanosci Nanotechnol ; 8(1): 386-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18468087

RESUMO

Based on the redox principle of galvanic displacement reaction, active metal foils, including magnesium (Mg), aluminum (Al) and cobalt (Co), were creatively introduced as new heterogeneous reducing media and were successfully employed in the presence of sonomechanical assistance to produce metallic nanoparticles such as silver, copper, tin and metal oxides such as those of iron, cobalt and ruthenium. Various combinations were investigated to determine the optimum ion/foil pairings for dense and monodisperse colloids. A wide range of nanoscale metallic species can be achieved by this method given optimum combination of ion/foil pairing. This new strategy greatly enriches and extends the existing methods for metallic nanoparticles preparation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...