Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Strahlenther Onkol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649484

RESUMO

BACKGROUND: Alopecia causes significant distress for patients and negatively impacts quality of life for low-grade glioma (LGG) patients. We aimed to compare and evaluate variations in dose distribution for scalp-sparing in LGG patients with proton therapy and photon therapy, namely intensity-modulated proton therapy (IMPT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and helical tomotherapy (HT). METHODS: This retrospective study utilized a dataset comprising imaging data from 22 patients with LGG who underwent postoperative radiotherapy. Treatment plans were generated for each patient with scalp-optimized (SO) approaches and scalp-non-optimized (SNO) approaches using proton techniques and photons techniques; all plans adhered to the same dose constraint of delivering a total radiation dose of 54.04 Gy to the target volume. All treatment plans were subsequently analyzed. RESULTS: All the plans generated in this study met the dose constraints for the target volume and OARs. The SO plans resulted in reduced maximum scalp dose (Dmax), mean scalp dose (Dmean), and volume of the scalp receiving 30 Gy (V30) and 40 Gy (V40) compared with SNO plans in all radiation techniques. Among all radiation techniques, the IMPT plans exhibited superior performance compared to other plans for dose homogeneity as for SO plans. Also, IMPT showed lower values for Dmean and Dmax than all photon radiation techniques. CONCLUSION: Our study provides evidence that the SO approach is a feasible technique for reducing scalp radiation dose. However, it is imperative to conduct prospective trials to assess the benefits associated with this approach.

2.
Phys Med Biol ; 68(19)2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37683675

RESUMO

Objective.Respiratory motion tracking techniques can provide optimal treatment accuracy for thoracoabdominal radiotherapy and robotic surgery. However, conventional imaging-based respiratory motion tracking techniques are time-lagged owing to the system latency of medical linear accelerators and surgical robots. This study aims to investigate the precursor time of respiratory-related neural signals and analyze the potential of neural signals-based respiratory motion tracking.Approach.The neural signals and respiratory motion from eighteen healthy volunteers were acquired simultaneously using a 256-channel scalp electroencephalography (EEG) system. The neural signals were preprocessed using the MNE python package to extract respiratory-related EEG neural signals. Cross-correlation analysis was performed to assess the precursor time and cross-correlation coefficient between respiratory-related EEG neural signals and respiratory motion.Main results.Respiratory-related neural signals that precede the emergence of respiratory motion are detectable via non-invasive EEG. On average, the precursor time of respiratory-related EEG neural signals was 0.68 s. The representative cross-correlation coefficients between EEG neural signals and respiratory motion of the eighteen healthy subjects varied from 0.22 to 0.87.Significance.Our findings suggest that neural signals have the potential to compensate for the system latency of medical linear accelerators and surgical robots. This indicates that neural signals-based respiratory motion tracking is a potential promising solution to respiratory motion and could be useful in thoracoabdominal radiotherapy and robotic surgery.


Assuntos
Eletroencefalografia , Radioterapia (Especialidade) , Humanos , Estudo de Prova de Conceito , Voluntários Saudáveis , Movimento (Física)
3.
Int J Pharm ; 641: 122987, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37207860

RESUMO

Diabetic retinopathy (DR) is one of the serious complications of diabetes, which has become the fourth leading cause of vision loss worldwide. Current treatment of DR relies on intravitreal injections of antiangiogenic agents, which has made considerable achievements in reducing visual impairment. However, long-term invasive injections require advanced technology and can lead to poor patient compliance as well as the incidence of ocular complications including bleeding, endophthalmitis, retinal detachment and others. Hence, we developed non-invasive liposomes (EA-Hb/TAT&isoDGR-Lipo) for efficiency co-delivery of ellagic acid and oxygen, which can be administered intravenously or by eye drops. Among that, ellagic acid (EA), as an aldose reductase inhibitor, could remove excessive reactive oxygen species (ROS) induced by high glucose for preventing retinal cell apoptosis, as well as reduce retinal angiogenesis through the blockage of VEGFR2 signaling pathway; carried oxygen could ameliorate DR hypoxia, and further enhanced the anti-neovascularization efficacy. Our results showed that EA-Hb/TAT&isoDGR-Lipo not only effectively protected retinal cells from high glucose-induced damage, but also inhibited VEGF-induced vascular endothelial cells migration, invasion, and tube formation in vitro. In addition, in a hypoxic cell model, EA-Hb/TAT&isoDGR-Lipo could reverse retinal cell hypoxia, thereby reducing the expression of VEGF. Significantly, after being administered as an injection or eye drops, EA-Hb/TAT&isoDGR-Lipo obviously ameliorated the structure (central retinal thickness and retinal vascular network) of retina by eliminating ROS and down-regulating the expression of GFAP, HIF-1α, VEGF and p-VEGFR2 in a DR mouse model. In summary, EA-Hb/TAT&isoDGR-Lipo holds great potentials in improvement of DR, which provides a novel approach for the treatment of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Neovascularização Retiniana , Camundongos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Retinopatia Diabética/prevenção & controle , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/prevenção & controle , Lipossomos/farmacologia , Ácido Elágico/metabolismo , Ácido Elágico/farmacologia , Ácido Elágico/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Retina/metabolismo , Hipóxia , Glucose/farmacologia , Soluções Oftálmicas/farmacologia
4.
Int J Nanomedicine ; 17: 6031-6046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36510619

RESUMO

Introduction: Sunitinib, a first-line therapy with a certain effect, was utilized in the early stages of renal cell carcinoma treatment. However, its clinical toxicity, side effects, and its limited bioavailability, resulted in inadequate clinical therapeutic efficacy. Building neoteric, simple, and safe drug delivery systems with existing drugs offers new options. Therefore, we aimed to construct a micelle to improve the clinical efficacy of sunitinib by reusing ibuprofen. Methods: We synthesized the sialic acid-poly (ethylene glycol)-ibuprofen (SA-PEG-IBU) amphipathic conjugate in two-step reaction. The SA-PEG-IBU amphiphilic conjugates can form into stable SPI nanomicelles in aqueous solution, which can be further loaded sunitinib (SU) to obtain the SPI/SU system. Following nanomicelle creation, sialic acid exposed to the nanomicelle surface can recognize the overexpressed E-selectin receptor on the membrane of cancer cells to enhance cellular uptake. The properties of morphology, stability, and drug release about the SPI/SU nanomicelles were investigated. Confocal microscopy and flow cytometry were used to assess the cellular uptake efficiency of nanomicelles in vitro. Finally, a xenograft tumor model in nude mice was constructed to investigate the body distribution and tumor suppression of SPI/SU in vivo. Results: The result showed that SPI nanomicelles exhibited excellent tumor targeting performance and inhibited the migration and invasion of tumor cell in vitro. The SPI nanomicelles can improve the accumulation of drugs in the tumor site that showed effective tumor inhibition in vivo. In addition, H&E staining and immunohistochemical analysis demonstrated that the SPI/SU nanomicelles had a superior therapeutic effect and lower biotoxicity. Conclusion: The SPI/SU nanomicelles displayed excellent anti-tumor ability, and can suppress the metastasis of tumor cell by decreasing the expression of Cyclooxygenase-2 due to the ibuprofen, providing an optimistic clinical application potential by developing a simple but safe drug delivery system.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Camundongos , Animais , Humanos , Micelas , Sunitinibe , Nanoconjugados , Ácido N-Acetilneuramínico , Camundongos Nus , Ibuprofeno , Polietilenoglicóis/química , Portadores de Fármacos/química , Linhagem Celular Tumoral
5.
Biomed Pharmacother ; 153: 113458, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076571

RESUMO

Since the concept, DNA damage repair has been stated as a natural biological event, and research has increasingly revealed its strong association to tumors, aging, immunity, biochemical detection, and other factors. The discovery of abnormal DNA repair in cancers has been heralded as a paradigm shift in the treatment of malignancies. A poly (ADP-ribose) polymerase (PARP) activates poly (ADP-ribosylation) to repair single-strand DNA breaks after DNA damage. In some cancers, such as breast cancer and gastric cancer, a PARP inhibitor can target the DNA damage response pathway, prevent DNA repair, and induce homologous recombination deficiency (HRD) tumors to create the phenomena of synthetic lethality. Increasingly, clinical trials are being submitted to research the uses of PARP inhibitors in various types of cancers. Small cell lung cancer (SCLC) is a quickly growing malignancy with numerous therapeutic limitations and a dismal prognosis. Sequencing of mutant genes revealed multiple gene connections that may contribute to its carcinogenesis, indicating a viable study direction. Furthermore, the therapy of SCLC with PARP inhibitors has been further explored. The mechanism of PARP action, as well as the advancement of its preclinical and clinical applications in SCLC, will be discussed in this review.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Reparo do DNA , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética
6.
J Nanobiotechnology ; 20(1): 221, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526013

RESUMO

Osteoarthritis (OA) is a common degenerative joint disease that can lead to disability. Blocking the complex malignant feedback loop system dominated by oxidative stress and pro-inflammatory factors is the key to treating OA. Here, we develop a multifunctional composite thermo-sensitive hydrogel (HPP@Cu gel), which is utilized by Poloxamer 407 (P407) and hyaluronic acid (HA) mixture as the gel matrix, then physically mixed with copper nanodots (Cu NDs) and platelet-rich plasma (PRP). Cu NDs is a novel nano-scavenger of reactive oxygen and nitrogen species (RONS) with efficient free radical scavenging activity. HPP@Cu gel is injected into the articular cavity, where it form an in situ gel that slowly released Cu NDs, HA, and PRP, prolonging the duration of drug action. Our results indicate that HPP@Cu gel could efficiently remove RONS from inflammatory sites and promote repolarization of macrophages to an anti-inflammatory phenotype. The HPP@Cu gel therapy dramatically reduces cartilage degradation and inflammatory factor production in OA rats. This study provides a reliable reference for the application of injectable hydrogels in inflammatory diseases associated with oxidative stress.


Assuntos
Osteoartrite , Plasma Rico em Plaquetas , Animais , Ácido Hialurônico , Hidrogéis/farmacologia , Macrófagos , Osteoartrite/tratamento farmacológico , Ratos
7.
Drug Deliv ; 28(1): 2329-2347, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34730054

RESUMO

In recent years, the incidence of various types of tumors has gradually increased, and it has also been found that there is a certain correlation between abnormal glucose and lipid metabolism and tumors. Glycolipid metabolism can promote tumor progression through multiple pathways, and the expression of related genes also directly or indirectly affects tumor metabolism, metastasis, invasion, and apoptosis. There has been much research on targeted drug delivery systems designed for abnormal glucose and lipid metabolism due to their accuracy and efficiency when used for tumor therapy. In addition, gene mutations have become an important factor in tumorigenesis. For this reason, gene therapy consisting of drugs designed for certain specifically expressed genes have been transfected into target cells to express or silence the corresponding proteins. Targeted gene drug vectors that achieve their corresponding therapeutic purposes are also rapidly developing. The genes related to glucose and lipid metabolism are considered as the target, and a corresponding gene drug carrier is constructed to influence and interfere with the expression of related genes, so as to block the tumorigenesis process and inhibit tumor growth. Designing drugs that target genes related to glucose and lipid metabolism within tumors is considered to be a promising strategy for the treatment of tumor diseases. This article summarizes the chemical drugs/gene drug delivery systems and the corresponding methods used in recent years for the treatment of abnormal glucose and lipid metabolism of tumors, and provides a theoretical basis for the development of glucolipid metabolism related therapeutic methods.


Assuntos
Terapia Genética/métodos , Glicólise/genética , Metabolismo dos Lipídeos/genética , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia , Animais , Portadores de Fármacos/química , Vetores Genéticos/administração & dosagem , Glucose/metabolismo , Glicolipídeos/metabolismo , Humanos , MicroRNAs/genética , Nanopartículas , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...