Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0300652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527032

RESUMO

Since the concept of toughness was introduced to transportation systems, transportation system toughness has received extensive attention from researchers in the field of transportation worldwide. In this paper, a methodology for quantifying and assessing the toughness of urban transportation systems is proposed in the context of the New Crown epidemic. Firstly, the definition of urban transportation system toughness in this context is clarified, and the entropy evaluation method is applied to construct the performance curve of urban transportation systems over time. Then, it is proposed to quantify the system's resistance, recovery, and adaptive ability in terms of the change in the cumulative amount of system performance. Finally, the three characteristic abilities of system toughness are organically combined to obtain a comprehensive assessment of system toughness. Example calculations and analyses are carried out in four Chinese cities with different levels of development, and the results show that the performance of urban transportation systems is positively correlated with their levels of development, and all of them fluctuate greatly under the influence of the epidemic, but Wuhan has the strongest resistance and recovery ability of the transportation system, and shows the highest toughness, followed by Lanzhou, Changchun, and Shanghai. The system toughness quantification and assessment methods proposed in this paper provide a reference for research on improving the ability of urban transportation systems to deal with multiple uncertainty disturbances.


Assuntos
Epidemias , Meios de Transporte , China , Cidades , Entropia , Incerteza
2.
Geophys Res Lett ; 49(7): e2021GL096968, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35865656

RESUMO

Surface latent heat fluxes help maintain tropical intraseasonal precipitation. We develop a latent heat flux diagnostic that depicts how latent heat fluxes vary with the near-surface specific humidity vertical gradient (Δq) and surface wind speed (|V|). Compared to fluxes estimated from |V| and Δq measured at tropical moorings and the Coupled Ocean Atmosphere Response Experiment 3.0 (COARE3.0) algorithm, tropical latent heat fluxes in the National Center for Atmospheric Research CEMS2 and Department of Energy E3SMv1 models are significantly overestimated at |V| and Δq extrema. Madden-Julian oscillation (MJO) sensitivity to surface flux algorithm is tested with offline and inline flux corrections. The offline correction adjusts model output fluxes toward mooring-estimated fluxes; the inline correction replaces the original bulk flux algorithm with the COARE3.0 algorithm in atmosphere-only simulations of each model. Both corrections indicate reduced latent heat flux feedback to intraseasonal precipitation, in better agreement with observations, suggesting that model-simulated fluxes are overly supportive for maintaining MJO convection.

3.
Geophys Res Lett ; 48(19)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34776556

RESUMO

The warm Gulf Stream sea surface temperatures strongly impact the evolution of winter clouds behind atmospheric cold fronts. Such cloud evolution remains challenging to model. The Gulf Stream is too wide within the ERA5 and MERRA2 reanalyses, affecting the turbulent surface fluxes. Known problems within the ERA5 boundary layer (too-dry and too-cool with too strong westerlies), ascertained primarily from ACTIVATE 2020 campaign aircraft dropsondes and secondarily from older buoy measurements, reinforce surface flux biases. In contrast, MERRA2 winter surface winds and air-sea temperature/humidity differences are slightly too weak, producing surface fluxes that are too low. Reanalyses boundary layer heights in the strongly forced winter cold-air-outbreak regime are realistic, whereas late-summer quiescent stable boundary layers are too shallow. Nevertheless, the reanalysis biases are small, and reanalyses adequately support their use for initializing higher-resolution cloud process modeling studies of cold-air outbreaks.

4.
Atmos Chem Phys ; 21(13): 10499-10526, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34377145

RESUMO

Cloud drop number concentrations (N d) over the western North Atlantic Ocean (WNAO) are generally highest during the winter (DJF) and lowest in summer (JJA), in contrast to aerosol proxy variables (aerosol optical depth, aerosol index, surface aerosol mass concentrations, surface cloud condensation nuclei (CCN) concentrations) that generally peak in spring (MAM) and JJA with minima in DJF. Using aircraft, satellite remote sensing, ground-based in situ measurement data, and reanalysis data, we characterize factors explaining the divergent seasonal cycles and furthermore probe into factors influencing N d on seasonal timescales. The results can be summarized well by features most pronounced in DJF, including features associated with cold-air outbreak (CAO) conditions such as enhanced values of CAO index, planetary boundary layer height (PBLH), low-level liquid cloud fraction, and cloud-top height, in addition to winds aligned with continental outflow. Data sorted into high- and low-N d days in each season, especially in DJF, revealed that all of these conditions were enhanced on the high-N d days, including reduced sea level pressure and stronger wind speeds. Although aerosols may be more abundant in MAM and JJA, the conditions needed to activate those particles into cloud droplets are weaker than in colder months, which is demonstrated by calculations of the strongest (weakest) aerosol indirect effects in DJF (JJA) based on comparing N d to perturbations in four different aerosol proxy variables (total and sulfate aerosol optical depth, aerosol index, surface mass concentration of sulfate). We used three machine learning models and up to 14 input variables to infer about most influential factors related to N d for DJF and JJA, with the best performance obtained with gradient-boosted regression tree (GBRT) analysis. The model results indicated that cloud fraction was the most important input variable, followed by some combination (depending on season) of CAO index and surface mass concentrations of sulfate and organic carbon. Future work is recommended to further understand aspects uncovered here such as impacts of free tropospheric aerosol entrainment on clouds, degree of boundary layer coupling, wet scavenging, and giant CCN effects on aerosol-N d relationships, updraft velocity, and vertical structure of cloud properties such as adiabaticity that impact the satellite estimation of N d.

5.
Glob Chang Biol ; 27(9): 1802-1819, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33565692

RESUMO

Tropical forests are an important part of global water and energy cycles, but the mechanisms that drive seasonality of their land-atmosphere exchanges have proven challenging to capture in models. Here, we (1) report the seasonality of fluxes of latent heat (LE), sensible heat (H), and outgoing short and longwave radiation at four diverse tropical forest sites across Amazonia-along the equator from the Caxiuanã and Tapajós National Forests in the eastern Amazon to a forest near Manaus, and from the equatorial zone to the southern forest in Reserva Jaru; (2) investigate how vegetation and climate influence these fluxes; and (3) evaluate land surface model performance by comparing simulations to observations. We found that previously identified failure of models to capture observed dry-season increases in evapotranspiration (ET) was associated with model overestimations of (1) magnitude and seasonality of Bowen ratios (relative to aseasonal observations in which sensible was only 20%-30% of the latent heat flux) indicating model exaggerated water limitation, (2) canopy emissivity and reflectance (albedo was only 10%-15% of incoming solar radiation, compared to 0.15%-0.22% simulated), and (3) vegetation temperatures (due to underestimation of dry-season ET and associated cooling). These partially compensating model-observation discrepancies (e.g., higher temperatures expected from excess Bowen ratios were partially ameliorated by brighter leaves and more interception/evaporation) significantly biased seasonal model estimates of net radiation (Rn ), the key driver of water and energy fluxes (LE ~ 0.6 Rn and H ~ 0.15 Rn ), though these biases varied among sites and models. A better representation of energy-related parameters associated with dynamic phenology (e.g., leaf optical properties, canopy interception, and skin temperature) could improve simulations and benchmarking of current vegetation-atmosphere exchange and reduce uncertainty of regional and global biogeochemical models.


Assuntos
Ecossistema , Água , Brasil , Florestas , Estações do Ano
6.
Atmos Chem Phys ; 20(8): 4637-4665, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33193752

RESUMO

This study provides a detailed characterization of stratocumulus clearings off the US West Coast using remote sensing, reanalysis, and airborne in situ data. Ten years (2009-2018) of Geostationary Operational Environmental Satellite (GOES) imagery data are used to quantify the monthly frequency, growth rate of total area (GRArea), and dimensional characteristics of 306 total clearings. While there is interannual variability, the summer (winter) months experienced the most (least) clearing events, with the lowest cloud fractions being in close proximity to coastal topographical features along the central to northern coast of California, including especially just south of Cape Mendocino and Cape Blanco. From 09:00 to 18:00 (PST), the median length, width, and area of clearings increased from 680 to 1231, 193 to 443, and ~ 67000 to ~ 250000km2, respectively. Machine learning was applied to identify the most influential factors governing the GRArea of clearings between 09:00 and 12:00PST, which is the time frame of most rapid clearing expansion. The results from gradient-boosted regression tree (GBRT) modeling revealed that air temperature at 850 hPa (T 850), specific humidity at 950 hPa (q 950), sea surface temperature (SST), and anomaly in mean sea level pressure (MSLPanom) were probably most impactful in enhancing GRArea using two scoring schemes. Clearings have distinguishing features such as an enhanced Pacific high shifted more towards northern California, offshore air that is warm and dry, stronger coastal surface winds, enhanced lower-tropospheric static stability, and increased subsidence. Although clearings are associated obviously with reduced cloud fraction where they reside, the domain-averaged cloud albedo was actually slightly higher on clearing days as compared to non-clearing days. To validate speculated processes linking environmental parameters to clearing growth rates based on satellite and reanalysis data, airborne data from three case flights were examined. Measurements were compared on both sides of the clear-cloudy border of clearings at multiple altitudes in the boundary layer and free troposphere, with results helping to support links suggested by this study's model simulations. More specifically, airborne data revealed the influence of the coastal low-level jet and extensive horizontal shear at cloud-relevant altitudes that promoted mixing between clear and cloudy air. Vertical profile data provide support for warm and dry air in the free troposphere, additionally promoting expansion of clearings. Airborne data revealed greater evidence of sea salt in clouds on clearing days, pointing to a possible role for, or simply the presence of, this aerosol type in clearing areas coincident with stronger coastal winds.

7.
Sci Data ; 7(1): 306, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934240

RESUMO

Land-atmosphere interactions at different temporal and spatial scales are important for our understanding of the Earth system and its modeling. The Landscape Evolution Observatory (LEO) at Biosphere 2, managed by the University of Arizona, hosts three nearly identical artificial bare-soil hillslopes with dimensions of 11 × 30 m2 (1 m depth) in a controlled and highly monitored environment within three large greenhouses. These facilities provide a unique opportunity to explore these interactions. The dataset presented here is a subset of the measurements in each LEO's hillslopes, from 1 July 2015 to 30 June 2019 every 15 minutes, consisting of temperature, water content and heat flux of the soil (at 5 cm depth) for 12 co-located points; temperature, relative humidity and wind speed above ground at 5 locations and 5 different heights ranging from 0.25 m to 9-10 m; 3D wind at 1 location; the four components of radiation at 2 locations; spatially aggregated precipitation rates, total subsurface discharge, and relative water storage; and the measurements from a weather station outside the greenhouses.

8.
J Geophys Res Atmos ; 125(6)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32699733

RESUMO

Decades of atmospheric research have focused on the Western North Atlantic Ocean (WNAO) region because of its unique location that offers accessibility for airborne and ship measurements, gradients in important atmospheric parameters, and a range of meteorological regimes leading to diverse conditions that are poorly understood. This work reviews these scientific investigations for the WNAO region, including the East Coast of North America and the island of Bermuda. Over 50 field campaigns and long-term monitoring programs, in addition to 715 peer-reviewed publications between 1946 and 2019 have provided a firm foundation of knowledge for these areas. Of particular importance in this region has been extensive work at the island of Bermuda that is host to important time series records of oceanic and atmospheric variables. Our review categorizes WNAO atmospheric research into eight major categories, with some studies fitting into multiple categories (relative %): Aerosols (25%), Gases (24%), Development/Validation of Techniques, Models, and Retrievals (18%), Meteorology and Transport (9%), Air-Sea Interactions (8%), Clouds/Storms (8%), Atmospheric Deposition (7%), and Aerosol-Cloud Interactions (2%). Recommendations for future research are provided in the categories highlighted above.

9.
Geophys Res Lett ; 46(21): 12598-12607, 2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33173247

RESUMO

Marine low-level clouds continue to be poorly simulated in models despite many studies and field experiments devoted to their improvement. Here we focus on the spatial errors in the cloud decks in the Department of Energy Earth system model (the Energy Exascale Earth System Model [E3SM]) relative to the satellite climatology by calculating centroid distances, area ratios, and overlap ratios. Since model dynamics is better simulated than clouds, these errors are attributed primarily to the model physics. To gain additional insight, we performed a sensitivity run in which model winds were nudged to those of reanalysis. This results in a large change (but not necessarily an improvement) in the simulated cloud decks. These differences between simulations are mainly due to the interactions between model dynamics and physics. These results suggest that both model physics (widely recognized) and its interaction with dynamics (less recognized) are important to model improvement in simulating these low-level clouds.

11.
Glob Chang Biol ; 23(1): 191-208, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27436068

RESUMO

To predict forest response to long-term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short-term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry-season intensities and lengths, to determine how well four state-of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity (GPP), of photosynthetic capacity (Pc), and of other fluxes and pools. Models simulated consistent dry-season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry-season GPP reductions were driven by an external environmental factor, 'soil water stress' and consequently by a constant or decreasing photosynthetic infrastructure (Pc), while observed dry-season GPP resulted from a combination of internal biological (leaf-flush and abscission and increased Pc) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange (NEE) and respiration (Re ) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry-season declines in GPP and Re consistent with most DGVMs simulations. While water limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light-harvesting adaptations (e.g., variations in leaf area index (LAI) and increasing leaf-level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model formulations. Correctly simulating flux seasonality at tropical forests requires a greater understanding and the incorporation of internal biophysical mechanisms in future model developments.


Assuntos
Ciclo do Carbono , Mudança Climática , Florestas , Brasil , Carbono , Ecossistema , Fotossíntese , Estações do Ano , Árvores
12.
Sci China C Life Sci ; 48(1): 41-8, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15844356

RESUMO

Based on the physico-biophysical considerations, mathematical analysis and some approximate formulations generally adopted in meteorology and ecology, an ecological dynamic model of grassland is developed. The model consists of three interactive variables, i.e. the biomass of living grass, the biomass of wilted grass, and the soil wetness. The major biophysical processes are represented in parameterization formulas, and the model parameters can be determined inversely by using the observational climatological and ecological data. Some major parameters are adjusted by this method to fit the data (although incomplete) in the Inner Mongolia grassland, and other secondary parameters are estimated through sensitivity studies. The model results are well agreed with reality, e.g., (i) the maintenance of grassland requires a minimum amount of annual precipitation (approximately 300 mm); (ii) there is a significant relationship between the annual precipitation and the biomass of living grass; and (iii) the overgrazing will eventually result in desertification. A specific emphasis is put on the shading effect of the wilted grass accumulated on the soil surface. It effectively reduces the soil surface temperature and the evaporation, hence benefits the maintenance of grassland and the reduction of water loss in the soil.


Assuntos
Ecossistema , Biomassa , China , Conservação dos Recursos Naturais , Ecologia , Meio Ambiente , Geografia , Modelos Teóricos , Poaceae , Solo , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...