Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36677076

RESUMO

This paper proposes to improve the output performance of a piezoelectric pump by matching the resonant frequency of the resonator to the optimal operating mode of bridge-type polydimethylsiloxane (PDMS) check valves. Simulation analyses reveal that the side-curling mode of the PDMS valve is conducive to liquid flow and exhibits a faster frequency response compared with the first bending mode. The first bending resonant frequency of a beam-type piezoelectric resonator was tuned close to the side-curling mode of the PDMS valve by adjusting the weight of two mass blocks installed on both ends of the resonator, so that both the resonator and the valve could work at their best conditions. Experiments were conducted on a detachable prototype piezoelectric pump using PDMS valves with three different lengths. The results confirm that the peak flowrate at the resonant point of the pump reaches its maximum when the resonant frequencies between the resonator and the valve are matched. Maximum peak flowrates of 88 mL/min, 72 mL/min and 70 mL/min were achieved at 722 Hz, 761 Hz and 789 Hz, respectively, for diaphragm pumps using five-, four- and three-inlet-hole PDMS valves, under a driving voltage of 300 Vpp.

2.
Micromachines (Basel) ; 12(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946645

RESUMO

This study proposes the improvement of the output performance of a resonant piezoelectric pump by adding proof masses to the free ends of the prongs of a U-shaped piezoelectric resonator. Simulation analyses show that the out-of-phase resonant frequency of the developed resonator can be tuned more efficiently within a more compact structure to the optimal operating frequency of the check valves by adjusting the thickness of the proof masses, which ensures that both the resonator and the check valves can operate at the best condition in a piezoelectric pump. A separable prototype piezoelectric pump composed of the proposed resonator and two diaphragm pumps was designed and fabricated with outline dimensions of 30 mm × 37 mm × 54 mm. Experimental results demonstrate remarkable improvements in the output performance and working efficiency of the piezoelectric pump. With the working fluid of liquid water and under a sinusoidal driving voltage of 298.5 Vpp, the miniature pump can achieve the maximum flow rate of 2258.9 mL/min with the highest volume efficiency of 77.1% and power consumption of 2.12 W under zero backpressure at 311/312 Hz, and the highest backpressure of 157.3 kPa under zero flow rate at 383 Hz.

3.
Appl Spectrosc ; 57(10): 1295-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14639761

RESUMO

A simple and inexpensive cubic zirconia anvil cell has been developed for the performance of in situ Raman spectroscopy up to the conditions of 500 degrees C and 30 kbar pressure. The design and construction of this cell are fully described, as well as its applications for Raman spectroscopy. Molybdenum heater wires wrapped around ceramic tubes encircling two cubic zirconia anvils are used to heat samples, and the temperatures are measured and controlled by a Pt-PtRh thermocouple adhered near the sample chamber and an intelligent digital control apparatus. With this cell, Raman spectroscopic measurements have been satisfactorily performed on water at 6000 bar pressure to 455 degrees C and on ice of room temperature to 24 kbar, in which the determinations of pressures make use of changes of the A1 Raman modes of quartz and the shift of the sharpline (R-line) luminescence of ruby, respectively.


Assuntos
Temperatura Alta , Pressão , Análise Espectral Raman/instrumentação , Zircônio/química , Desenho de Equipamento , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...